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Introduction

Kalman filter - used before in system identification
→ reference (desired) signal:

d(t) = hT (t)x(t) + v(t)

h - unknown system of length L
x(t) = [x(t)x(t − 1) . . . x(n − L + 1)]T - input signal
v(t) - system noise

Our approach - identification of bilinear forms
→ reference (desired) signal:

d(t) = hT (t)X(t)g(t) + v(t)
h, g: unknown systems of lengths L, M
X(t) = [x1(t) x2(t) . . . xM(t)] - input signal matrix
xm(t) = [xm(t) xm(t − 1) . . . xm(t − L+ 1)]T m = 1,2, . . . ,M
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Motivation

Target: a Kalman algorithm for the identification of bilinear forms
Timely topic
Numerous applications:
→ nonlinear acoustic echo cancellation
→ identification of Hammerstein systems
→ tensor algebra - Big Data
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System Model

Signal model:
d(t) = hT (t)X(t)g(t) + v(t)
→ bilinear form with respect to the impulse responses

System impulse responses:

h(t) = h(t − 1) + wh(t) g(t) = g(t − 1) + wg(t)

wh(t), wg(t): zero-mean WGN

Rwh(t) = σ2
wh

IL Rwg(t) = σ2
wg IM

Equivalent model:
d(t) = fT (t)x̃(t) + v(t)

f(t) = g(t)⊗ h(t)− Kronecker product of length ML

x̃(t) = vec[X(t)] = [xT
1 (t) xT

2 (t) . . . xT
M(t)]T
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Scaling Ambiguity

f(t) = g(t)⊗ h(t) = [ηg(t)]⊗
[

1
ηh(t)

]
η ∈ R∗ - scaling factor

[
1
ηh(t)

]T
X(t) [ηg(t)] = hT (t)X(t)g(t)

⇒
ĥ(t)→ 1

ηh(t)
ĝ(t)→ ηg(t)
f̂(t)→ f(t)

Normalized projection misalignment (NPM) 1

NPM[h(t), ĥ(t)] = 1−
[

hT (t)ĥ(t)
||h(t)||||ĥ(t)||

]2

NPM[g(t), ĝ(t)] = 1−
[

gT (t)ĝ(t)
||g(t)||||ĝ(t)||

]2

Normalized misalignment (NM)

NM[f(t), f̂(t)] = ‖f(t)− f̂(t)‖2/‖f(t)‖2

1 [Morgan et al., IEEE Signal Processing Letters, July 1998]
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NPM[h(t), ĥ(t)] = 1−
[

hT (t)ĥ(t)
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ĥ(t)→ 1
ηh(t)
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||h(t)||||ĥ(t)||
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Kalman Filter for Bilinear Forms (KF - BF)

estimated output signal: ŷ(t) = ĥT (t − 1)X(t)ĝ(t − 1)

error signal:

e(t) = d(t)− f̂T (t − 1)x̃(t)

= d(t)− ĥT (t − 1)x̃ĝ(t)← eĝ(t)

= d(t)− ĝT (t − 1)x̃ĥ(t)← eĥ(t)

x̃ĝ(t) = [ĝ(t − 1)⊗ IL]T x̃(t) x̃ĥ(t) = [IM ⊗ ĥ(t − 1)]T x̃(t)
optimal estimates of the state vectors:

ĥ(t) = ĥ(t − 1) + kh(t)e(t) ĝ(t) = ĝ(t − 1) + kg(t)e(t)

kh(t), kg(t): Kalman gain vectors
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error signal:

e(t) = d(t)− f̂T (t − 1)x̃(t)
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a posteriori misalignments:

µh(t) = h(t)/η − ĥ(t) µg(t) = ηg(t)− ĝ(t)

a priori misalignments:

mh(t) = h(t)/η − ĥ(t − 1)
= µh(t − 1) + wh(t)/η

mg(t) = ηg(t)− ĝ(t − 1)
= µg(t − 1) + ηwg(t)

simplifying notations:

wh(t) = wh(t)/η wg(t) = ηwg(t)
Rmh(t) = Rµh

(t − 1) + σ2
wh

IL Rmg(t) = Rµg
(t − 1) + σ2

wg
IM

minimizing (1/L)tr
[
Rµh(t)

]
, (1/M)tr

[
Rµg(t)

]
yields:

kh(t) = Rmh(t)x̃ĝ(t)[x̃
T
ĝ (t)Rmh(t)x̃ĝ(t) + σ2

v ]
−1

kg(t) = Rmg(t)x̃ĥ(t)[x̃
T
ĥ
(t)Rmg(t)x̃ĥ(t) + σ2

v ]
−1

IEEE ICASSP, 15-20 April 2018 Calgary, Alberta, Canada April 20, 2018 8 / 16



a posteriori misalignments:
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Simplified Kalman Filter for Bilinear Forms (SKF - BF)

Simplifying assumptions:

after convergence was reached:
Rmh(t) ≈ σ2

mh
(t)IL Rmg(t) ≈ σ2

mg(t)IM

misalignments of the individual coefficients: uncorrelated→
→ approximate:

IL − kh(t)x̃T
ĝ (t) ≈

[
1− 1

LkT
h (t)x̃ĝ(t)

]
IL

IM − kg(t)x̃T
ĥ
(t) ≈

[
1− 1

M kT
g (t)x̃ĥ(t)

]
IM

⇒ Simplified Kalman Filter for bilinear forms (SKF - BF)
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ĝ (t) ≈

[
1− 1

LkT
h (t)x̃ĝ(t)

]
IL

IM − kg(t)x̃T
ĥ
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Practical Considerations

The parameters related to uncertainties in h, g: σ2
wh

, σ2
wg

:
small⇒ good misalignment, poor tracking
large (i.e., high uncertainty in the systems)⇒
⇒ good tracking, high misalignment

A good compromise is needed!

In practice→ some a priori information
(e.g., if g - time-invariant⇒ σ2

wg
= 0)

By applying the `2 norm on the state equation:

σ̂2
wh

(t) = 1
L

∥∥∥ĥ(t)− ĥ(t − 1)
∥∥∥2

2
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∥∥∥ĥ(t)− ĥ(t − 1)
∥∥∥2

2

IEEE ICASSP, 15-20 April 2018 Calgary, Alberta, Canada April 20, 2018 10 / 16



Practical Considerations

The parameters related to uncertainties in h, g: σ2
wh

, σ2
wg

:
small⇒ good misalignment, poor tracking
large (i.e., high uncertainty in the systems)⇒
⇒ good tracking, high misalignment

A good compromise is needed!

In practice→ some a priori information
(e.g., if g - time-invariant⇒ σ2

wg
= 0)

By applying the `2 norm on the state equation:

σ̂2
wh

(t) = 1
L
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Simulation Setup

Conditions
input signals xm(t),m = 1,2, . . . ,M - independent WGN,
respectively AR(1) generated by filtering a white Gaussian noise
through a first-order system 1/

(
1− 0.8z−1)

h, g - Gaussian, randomly generated, of lengths L = 64, M = 8
v(t) - independent white Gaussian noise signal

Compared algorithms
KF-BF and KF
SKF-BF and SKF when σ2

wh
= σ2

wg
= σ2

w = 10−9

SKF-BF and SKF when σ2
wg

= 0 and σ̂2
wh

(t) = ‖ĥ(t)−ĥ(t−1)‖2

2
L
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Figure 1: Normalized misalignment of the KF-BF and regular KF for different types of
input signals. ML = 512, σ2

v = 0.01, σ2
wh

= σ2
wg

= σ2
w = 10−9, and ε = 10−5.

IEEE ICASSP, 15-20 April 2018 Calgary, Alberta, Canada April 20, 2018 12 / 16



0 0.5 1 1.5 2 2.5 3

Iterations ×105

-70

-60

-50

-40

-30

-20

-10

0

10
N

o
rm

al
iz

ed
 m

is
al

ig
n

m
en

t 
(d

B
)

SKF-BF, WGN inputs
Regular SKF, WGN inputs
SKF-BF, AR(1) inputs
Regular SKF, AR(1) inputs

Figure 2: Normalized misalignment of the SKF-BF and regular SKF for different types
of input signals. Other conditions are the same as in Fig. 1.
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Figure 3: Normalized misalignment of the SKF-BF and regular SKF for different types
of input signals, using the recursive estimates σ̂2

wh
(t) and σ̂2

w (t), respectively.
ML = 512, σ2

v = 0.01, σ2
wg

= 0, and ε = 10−5.
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Conclusions

KF-BF, SKF-BF: improvement in convergence rate and tracking
with respect to regular KF, SKF

The proposed solution uses 2 filters of lengths L, M, compared to
one filter of length ML for the regular one⇒ computationally
simpler

SKF-BF provides:

reduced computational complexity , but also
slower convergence rate, especially for correlated inputs

with respect to KF-BF
The experimental results indicate the good performance of the
proposed algorithms
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Thank you!
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