Identification of Bilinear Forms with the Kalman Filter

Laura Dogariu ${ }^{1,3}$, Constantin Paleologu ${ }^{1}$, Silviu Ciochină ${ }^{1}$, Jacob Benesty ${ }^{2}$, and Pablo Piantanida ${ }^{3}$

${ }^{1}$ University Politehnica of Bucharest, Romania
${ }^{2}$ INRS-EMT, University of Quebec, Montreal, Canada
${ }^{3}$ L2S, CentraleSupélec, F-91192 Gif-sur-Yvette, France

e-mail: Idogariu@comm.pub.ro
April 20, 2018

Outline

(9) Introduction and Motivation
(2) System Model
(3) Kalman Filter for Bilinear Forms (KF - BF)

4 Simplified Kalman Filter for Bilinear Forms (SKF - BF)
(5) Practical Considerations

6 Simulation Results
(7) Conclusions

Introduction

- Kalman filter - used before in system identification \rightarrow reference (desired) signal:

$$
d(t)=\mathbf{h}^{T}(t) \mathbf{x}(t)+v(t)
$$

h - unknown system of length L
$\mathbf{x}(t)=[x(t) x(t-1) \ldots x(n-L+1)]^{T}$ - input signal $v(t)$ - system noise

Introduction

- Kalman filter - used before in system identification
\rightarrow reference (desired) signal:

$$
d(t)=\mathbf{h}^{T}(t) \mathbf{x}(t)+v(t)
$$

h - unknown system of length L
$\mathbf{x}(t)=[x(t) x(t-1) \ldots x(n-L+1)]^{T}$ - input signal
$v(t)$ - system noise

- Our approach - identification of bilinear forms \rightarrow reference (desired) signal:

$$
d(t)=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t)+v(t)
$$

\mathbf{h}, \mathbf{g} : unknown systems of lengths L, M
$\mathbf{X}(t)=\left[\begin{array}{llll}\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t) & \ldots & \mathbf{x}_{M}(t)\end{array}\right]$ - input signal matrix
$\mathbf{x}_{m}(t)=\left[\begin{array}{llll}x_{m}(t) & x_{m}(t-1) & \ldots & x_{m}(t-L+1)\end{array}\right]^{T} \quad m=1,2, \ldots, M$

Motivation

- Target: a Kalman algorithm for the identification of bilinear forms
- Timely topic
- Numerous applications:
\rightarrow nonlinear acoustic echo cancellation
\rightarrow identification of Hammerstein systems
\rightarrow tensor algebra - Big Data

System Model

- Signal model:
$d(t)=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t)+v(t)$
\rightarrow bilinear form with respect to the impulse responses

System Model

- Signal model:
$d(t)=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t)+v(t)$
\rightarrow bilinear form with respect to the impulse responses
- System impulse responses:

$$
\begin{gathered}
\mathbf{h}(t)=\mathbf{h}(t-1)+\mathbf{w}_{\mathbf{h}}(t) \quad \mathbf{g}(t)=\mathbf{g}(t-1)+\mathbf{w}_{\mathbf{g}}(t) \\
\mathbf{w}_{\mathbf{h}}(t), \mathbf{w}_{\mathbf{g}}(t): \text { zero-mean WGN }
\end{gathered}
$$

$$
\mathbf{R}_{\mathbf{w}_{\mathbf{h}}}(t)=\sigma_{w_{\mathbf{h}}}^{2} \mathbf{I}_{L} \quad \mathbf{R}_{\mathbf{w}_{\mathbf{g}}}(t)=\sigma_{w_{\mathbf{g}}}^{2} \mathbf{I}_{M}
$$

System Model

- Signal model:

$$
d(t)=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t)+v(t)
$$

\rightarrow bilinear form with respect to the impulse responses

- System impulse responses:

$$
\begin{array}{cr}
\mathbf{h}(t)=\mathbf{h}(t-1)+\mathbf{w}_{\mathbf{h}}(t) & \mathbf{g}(t)=\mathbf{g}(t-1)+\mathbf{w}_{\mathbf{g}}(t) \\
\mathbf{w}_{\mathbf{h}}(t), \mathbf{w}_{\mathbf{g}}(t): \text { zero-mean WGN } \\
\mathbf{R}_{\mathbf{w}_{\mathbf{h}}}(t)=\sigma_{w_{\mathbf{h}}}^{2} \mathbf{I}_{L} & \mathbf{R}_{\mathbf{w}_{\mathbf{g}}}(t)=\sigma_{w_{\mathbf{g}}}^{2} \mathbf{I}_{M}
\end{array}
$$

- Equivalent model:

$$
d(t)=\mathbf{f}^{T}(t) \widetilde{\mathbf{x}}(t)+v(t)
$$

$$
\begin{aligned}
\mathbf{f}(t) & =\mathbf{g}(t) \otimes \mathbf{h}(t)-\text { Kronecker product of length } M L \\
\widetilde{\mathbf{x}}(t) & =\operatorname{vec}[\mathbf{X}(t)]=\left[\begin{array}{llll}
\mathbf{x}_{1}^{T}(t) & \mathbf{x}_{2}^{T}(t) & \ldots & \mathbf{x}_{M}^{T}(t)
\end{array}\right]^{T}
\end{aligned}
$$

Scaling Ambiguity

- $\mathbf{f}(t)=\mathbf{g}(t) \otimes \mathbf{h}(t)=[\eta \mathbf{g}(t)] \otimes\left[\frac{1}{\eta} \mathbf{h}(t)\right] \quad \eta \in \mathcal{R}^{*}$ - scaling factor

$$
\left[\frac{1}{\eta} \mathbf{h}(t)\right]^{T} \mathbf{X}(t)[\eta \mathbf{g}(t)]=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t)
$$

Scaling Ambiguity

- $\mathbf{f}(t)=\mathbf{g}(t) \otimes \mathbf{h}(t)=[\eta \mathbf{g}(t)] \otimes\left[\frac{1}{\eta} \mathbf{h}(t)\right] \quad \eta \in \mathcal{R}^{*}$ - scaling factor

$$
\left[\frac{1}{\eta} \mathbf{h}(t)\right]^{T} \mathbf{X}(t)[\eta \mathbf{g}(t)]=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t) \quad \Rightarrow \quad \begin{aligned}
& \widehat{\mathbf{h}}(t) \rightarrow \frac{1}{\eta} \mathbf{h}(t) \\
& \widehat{\mathbf{g}}(t) \rightarrow \eta \mathbf{g}(t) \\
& \widehat{\mathbf{f}}(t) \rightarrow \mathbf{f}(t)
\end{aligned}
$$

Scaling Ambiguity

- $\mathbf{f}(t)=\mathbf{g}(t) \otimes \mathbf{h}(t)=[\eta \mathbf{g}(t)] \otimes\left[\frac{1}{\eta} \mathbf{h}(t)\right] \quad \eta \in \mathcal{R}^{*}$ - scaling factor

$$
\left[\begin{array}{l}
\left.\frac{1}{\eta} \mathbf{h}(t)\right]^{T} \mathbf{X}(t)[\eta \mathbf{g}(t)]=\mathbf{h}^{T}(t) \mathbf{X}(t) \mathbf{g}(t) \quad \Rightarrow \quad \begin{array}{l}
\mathbf{h}(t) \rightarrow \frac{1}{\eta} \mathbf{h}(t) \\
\widehat{\mathbf{g}}(t) \rightarrow \eta \mathbf{g}(t) \\
\mathbf{f}(t) \rightarrow \mathbf{f}(t)
\end{array}, ~
\end{array}\right.
$$

- Normalized projection misalignment (NPM) ${ }^{1}$
$\operatorname{NPM}[\mathbf{h}(t), \widehat{\mathbf{h}}(t)]=1-\left[\frac{\mathbf{h}^{T}(t) \widehat{\mathbf{h}}(t)}{\|\mathbf{h}(t)\| \widehat{\mathbf{h}}(t) \|}\right]^{2} \operatorname{NPM}[\mathbf{g}(t), \widehat{\mathbf{g}}(t)]=1-\left[\frac{\mathbf{g}^{T}(t) \widehat{\mathbf{g}}(t)}{\|\mathbf{g}(t)\| \mid\|\mathbf{g}(t)\|}\right]^{2}$
- Normalized misalignment (NM)

$$
\mathrm{NM}[\mathbf{f}(t), \widehat{\mathbf{f}}(t)]=\|\mathbf{f}(t)-\widehat{\mathbf{f}}(t)\|^{2} /\|\mathbf{f}(t)\|^{2}
$$

${ }^{1}$ [Morgan et al., IEEE Signal Processing Letters, July 1998]

Kalman Filter for Bilinear Forms (KF - BF)

- estimated output signal: $\widehat{y}(t)=\widehat{\mathbf{h}}^{T}(t-1) \mathbf{X}(t) \widehat{\mathbf{g}}(t-1)$

Kalman Filter for Bilinear Forms (KF - BF)

- estimated output signal: $\widehat{y}(t)=\widehat{\mathbf{h}}^{T}(t-1) \mathbf{X}(t) \widehat{\mathbf{g}}(t-1)$
- error signal:

$$
\begin{aligned}
e(t) & =d(t)-\widehat{\mathbf{f}}^{T}(t-1) \widetilde{\mathbf{x}}(t) \\
& =d(t)-\widehat{\mathbf{h}}^{T}(t-1) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t) \leftarrow e_{\widehat{\mathbf{g}}}(t) \\
& =d(t)-\widehat{\mathbf{g}}^{T}(t-1) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t) \leftarrow e_{\widehat{\mathbf{h}}}(t)
\end{aligned}
$$

$$
\widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)=\left[\widehat{\mathbf{g}}(t-1) \otimes \mathbf{I}_{L}\right]^{T} \widetilde{\mathbf{x}}(t) \quad \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)=\left[\mathbf{I}_{M} \otimes \widehat{\mathbf{h}}(t-1)\right]^{T} \widetilde{\mathbf{x}}(t)
$$

Kalman Filter for Bilinear Forms (KF - BF)

- estimated output signal: $\widehat{y}(t)=\widehat{\mathbf{h}}^{T}(t-1) \mathbf{X}(t) \widehat{\mathbf{g}}(t-1)$
- error signal:

$$
\begin{aligned}
e(t) & =d(t)-\widehat{\mathbf{f}}^{T}(t-1) \widetilde{\mathbf{x}}(t) \\
& =d(t)-\widehat{\mathbf{h}}^{T}(t-1) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t) \leftarrow e_{\widehat{\mathbf{g}}}(t) \\
& =d(t)-\widehat{\mathbf{g}}^{T}(t-1) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t) \leftarrow e_{\widehat{\mathbf{h}}}(t)
\end{aligned}
$$

$\widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)=\left[\widehat{\mathbf{g}}(t-1) \otimes \mathbf{I}_{L}\right]^{T} \widetilde{\mathbf{x}}(t) \quad \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)=\left[\mathbf{I}_{M} \otimes \widehat{\mathbf{h}}(t-1)\right]^{T} \widetilde{\mathbf{x}}(t)$

- optimal estimates of the state vectors:

$$
\widehat{\mathbf{h}}(t)=\widehat{\mathbf{h}}(t-1)+\mathbf{k}_{\mathbf{h}}(t) e(t) \quad \widehat{\mathbf{g}}(t)=\widehat{\mathbf{g}}(t-1)+\mathbf{k}_{\mathbf{g}}(t) e(t)
$$

$\mathbf{k}_{\mathbf{h}}(t), \mathbf{k}_{\mathbf{g}}(t)$: Kalman gain vectors

- a posteriori misalignments:

$$
\mu_{\mathbf{h}}(t)=\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t)
$$

$$
\mu_{\mathbf{g}}(t)=\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t)
$$

- a priori misalignments:

$$
\begin{aligned}
\mathbf{m}_{\mathbf{h}}(t) & =\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t-1) \\
& =\boldsymbol{\mu}_{\mathbf{h}}(t-1)+\mathbf{w}_{\mathbf{h}}(t) / \eta
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{m}_{\mathbf{g}}(t) & =\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t-1) \\
& =\mu_{\mathbf{g}}(t-1)+\eta \mathbf{w}_{\mathbf{g}}(t)
\end{aligned}
$$

- a posteriori misalignments:

$$
\mu_{\mathbf{h}}(t)=\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t)
$$

$$
\boldsymbol{\mu}_{\mathbf{g}}(t)=\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t)
$$

- a priori misalignments:

$$
\begin{aligned}
\mathbf{m}_{\mathbf{h}}(t) & =\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t-1) \\
& =\boldsymbol{\mu}_{\mathbf{h}}(t-1)+\mathbf{w}_{\mathbf{h}}(t) / \eta
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{m}_{\mathbf{g}}(t) & =\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t-1) \\
& =\mu_{\mathbf{g}}(t-1)+\eta \mathbf{w}_{\mathbf{g}}(t)
\end{aligned}
$$

- simplifying notations:

$$
\begin{gathered}
\overline{\mathbf{W}}_{\mathbf{h}}(t)=\mathbf{w}_{\mathbf{h}}(t) / \eta \\
\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t)=\mathbf{R}_{\boldsymbol{\mu}_{\mathbf{h}}}(t-1)+\sigma_{\bar{w}_{\mathbf{h}}}^{2} \mathbf{I}_{L}
\end{gathered}
$$

$$
\overline{\mathbf{w}}_{\mathbf{g}}(t)=\eta \mathbf{w}_{\mathbf{g}}(t)
$$

$$
\mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t)=\mathbf{R}_{\boldsymbol{\mu}_{\mathbf{g}}}(t-1)+\sigma_{w_{\mathbf{g}}}^{2} \mathbf{I}_{M}
$$

- a posteriori misalignments:

$$
\mu_{\mathbf{h}}(t)=\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t)
$$

$$
\boldsymbol{\mu}_{\mathbf{g}}(t)=\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t)
$$

- a priori misalignments:

$$
\begin{aligned}
\mathbf{m}_{\mathbf{h}}(t) & =\mathbf{h}(t) / \eta-\widehat{\mathbf{h}}(t-1) \\
& =\boldsymbol{\mu}_{\mathbf{h}}(t-1)+\mathbf{w}_{\mathbf{h}}(t) / \eta
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{m}_{\mathbf{g}}(t) & =\eta \mathbf{g}(t)-\widehat{\mathbf{g}}(t-1) \\
& =\mu_{\mathbf{g}}(t-1)+\eta \mathbf{w}_{\mathbf{g}}(t)
\end{aligned}
$$

- simplifying notations:

$$
\begin{array}{cc}
\overline{\mathbf{w}}_{\mathbf{h}}(t)=\mathbf{w}_{\mathbf{h}}(t) / \eta & \overline{\mathbf{w}}_{\mathbf{g}}(t)=\eta \mathbf{w}_{\mathbf{g}}(t) \\
\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t)=\mathbf{R}_{\boldsymbol{\mu}_{\mathbf{h}}}(t-1)+\sigma_{\bar{w}_{\mathbf{h}}}^{2} \mathbf{I}_{L} & \mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t)=\mathbf{R}_{\boldsymbol{\mu}_{\mathbf{g}}}(t-1)+\sigma_{\bar{w}_{\mathbf{g}}}^{2} \mathbf{I}_{M}
\end{array}
$$

- minimizing $(1 / L) \operatorname{tr}\left[\mathbf{R}_{\mu_{\mathrm{h}}}(t)\right],(1 / M) \operatorname{tr}\left[\mathbf{R}_{\mu_{\mathrm{g}}}(t)\right]$ yields:

$$
\begin{aligned}
& \mathbf{k}_{\mathbf{h}}(t)=\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)\left[\widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}^{T}(t) \mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)+\sigma_{v}^{2}\right]^{-1} \\
& \mathbf{k}_{\mathbf{g}}(t)=\mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)\left[\widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}^{T}(t) \mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)+\sigma_{v}^{2}\right]^{-1}
\end{aligned}
$$

Simplified Kalman Filter for Bilinear Forms (SKF - BF)

Simplifying assumptions:

Simplified Kalman Filter for Bilinear Forms (SKF - BF)

Simplifying assumptions:

- after convergence was reached:

$$
\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{h}}}^{2}(t) \mathbf{I}_{L} \quad \mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{g}}}^{2}(t) \mathbf{l}_{M}
$$

Simplified Kalman Filter for Bilinear Forms (SKF - BF)

Simplifying assumptions:

- after convergence was reached:

$$
\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{h}}}^{2}(t) \mathbf{I}_{L} \quad \mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{g}}}^{2}(t) \mathbf{l}_{M}
$$

- misalignments of the individual coefficients: uncorrelated \rightarrow
\rightarrow approximate:

$$
\begin{aligned}
\mathbf{I}_{L}-\mathbf{k}_{\mathbf{h}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}^{T}(t) & \approx\left[1-\frac{1}{L} \mathbf{k}_{\mathbf{h}}^{T}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)\right] \mathbf{I}_{L} \\
\mathbf{I}_{M}-\mathbf{k}_{\mathbf{g}}(t) \widetilde{\mathbf{x}}_{\frac{\mathbf{h}}{T}}^{T}(t) & \approx\left[1-\frac{1}{M} \mathbf{k}_{\mathbf{g}}^{T}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)\right] \mathbf{I}_{M}
\end{aligned}
$$

Simplified Kalman Filter for Bilinear Forms (SKF - BF)

Simplifying assumptions:

- after convergence was reached:

$$
\mathbf{R}_{\mathbf{m}_{\mathbf{h}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{h}}}^{2}(t) \mathbf{I}_{L} \quad \mathbf{R}_{\mathbf{m}_{\mathbf{g}}}(t) \approx \sigma_{\mathbf{m}_{\mathbf{g}}}^{2}(t) \mathbf{l}_{M}
$$

- misalignments of the individual coefficients: uncorrelated \rightarrow
\rightarrow approximate:

$$
\begin{aligned}
\mathbf{I}_{L}-\mathbf{k}_{\mathbf{h}}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}^{T}(t) & \approx\left[1-\frac{1}{L} \mathbf{k}_{\mathbf{h}}^{T}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{g}}}(t)\right] \mathbf{I}_{L} \\
\mathbf{I}_{M}-\mathbf{k}_{\mathbf{g}}(t) \widetilde{\mathbf{x}}_{\frac{\mathbf{h}}{T}}^{T}(t) & \approx\left[1-\frac{1}{M} \mathbf{k}_{\mathbf{g}}^{T}(t) \widetilde{\mathbf{x}}_{\widehat{\mathbf{h}}}(t)\right] \mathbf{I}_{M}
\end{aligned}
$$

\Rightarrow Simplified Kalman Filter for bilinear forms (SKF - BF)

Practical Considerations

- The parameters related to uncertainties in $\mathbf{h}, \mathbf{g}: \sigma_{\bar{w}_{\mathbf{h}}}^{2}, \sigma_{\bar{w}_{\mathbf{g}}}^{2}$:
- small \Rightarrow good misalignment, poor tracking
- large (i.e., high uncertainty in the systems) \Rightarrow \Rightarrow good tracking, high misalignment

Practical Considerations

- The parameters related to uncertainties in $\mathbf{h}, \mathbf{g}: \sigma_{\bar{w}_{\mathbf{h}}}^{2}, \sigma_{\bar{w}_{\mathbf{g}}}^{2}$:
- small \Rightarrow good misalignment, poor tracking
- large (i.e., high uncertainty in the systems) \Rightarrow \Rightarrow good tracking, high misalignment
- A good compromise is needed!

Practical Considerations

- The parameters related to uncertainties in $\mathbf{h}, \mathbf{g}: \sigma_{\bar{w}_{\mathbf{h}}}^{2}, \sigma_{\bar{w}_{\mathbf{g}}}^{2}$:
- small \Rightarrow good misalignment, poor tracking
- large (i.e., high uncertainty in the systems) \Rightarrow \Rightarrow good tracking, high misalignment
- A good compromise is needed!
- In practice \rightarrow some a priori information
(e.g., if \mathbf{g} - time-invariant $\Rightarrow \sigma_{\bar{W}_{\mathbf{g}}}^{2}=0$)

Practical Considerations

- The parameters related to uncertainties in $\mathbf{h}, \mathbf{g}: \sigma_{\bar{w}_{\mathbf{h}}}^{2}, \sigma_{\bar{w}_{\mathbf{g}}}^{2}$:
- small \Rightarrow good misalignment, poor tracking
- large (i.e., high uncertainty in the systems) \Rightarrow \Rightarrow good tracking, high misalignment
- A good compromise is needed!
- In practice \rightarrow some a priori information
(e.g., if \mathbf{g} - time-invariant $\Rightarrow \sigma_{\bar{w}_{\mathbf{g}}}^{2}=0$)
- By applying the ℓ_{2} norm on the state equation:

$$
\widehat{\sigma}_{W_{\mathbf{h}}}^{2}(t)=\frac{1}{L}\|\widehat{\mathbf{h}}(t)-\widehat{\mathbf{h}}(t-1)\|_{2}^{2}
$$

Simulation Setup

Conditions

- input signals $x_{m}(t), m=1,2, \ldots, M$ - independent WGN, respectively $A R(1)$ generated by filtering a white Gaussian noise through a first-order system $1 /\left(1-0.8 z^{-1}\right)$
- h, \mathbf{g} - Gaussian, randomly generated, of lengths $L=64, M=8$
- $v(t)$ - independent white Gaussian noise signal

Simulation Setup

Conditions

- input signals $x_{m}(t), m=1,2, \ldots, M$ - independent WGN, respectively $\operatorname{AR}(1)$ generated by filtering a white Gaussian noise through a first-order system $1 /\left(1-0.8 z^{-1}\right)$
- h, \mathbf{g} - Gaussian, randomly generated, of lengths $L=64, M=8$
- $v(t)$ - independent white Gaussian noise signal

Compared algorithms

- KF-BF and KF
- SKF-BF and SKF when $\sigma_{\bar{W}_{\mathbf{h}}}^{2}=\sigma_{\bar{w}_{\mathrm{g}}}^{2}=\sigma_{w}^{2}=10^{-9}$
- SKF-BF and SKF when $\sigma_{\bar{w}_{\mathbf{g}}}^{2}=0$ and $\widehat{\sigma}_{\bar{W}_{\mathbf{h}}}^{2}(t)=\frac{\|\widehat{\mathbf{h}}(t)-\widehat{\mathbf{h}}(t-1)\|_{2}^{2}}{L}$

Figure 1: Normalized misalignment of the KF-BF and regular KF for different types of input signals. $M L=512, \sigma_{v}^{2}=0.01, \sigma_{\bar{w}_{\mathrm{h}}}^{2}=\sigma_{\bar{w}_{\mathrm{g}}}^{2}=\sigma_{w}^{2}=10^{-9}$, and $\epsilon=10^{-5}$.

Figure 2: Normalized misalignment of the SKF-BF and regular SKF for different types of input signals. Other conditions are the same as in Fig. 1.

Figure 3: Normalized misalignment of the SKF-BF and regular SKF for different types of input signals, using the recursive estimates $\widehat{\sigma}_{\bar{W}_{\mathrm{h}}}^{2}(t)$ and $\widehat{\sigma}_{w}^{2}(t)$, respectively. $M L=512, \sigma_{v}^{2}=0.01, \sigma_{\bar{\omega},}^{2}=0$, and $\epsilon=10^{-5}$.

Conclusions

- KF-BF, SKF-BF: improvement in convergence rate and tracking with respect to regular KF, SKF

Conclusions

- KF-BF, SKF-BF: improvement in convergence rate and tracking with respect to regular KF, SKF
- The proposed solution uses 2 filters of lengths L, M, compared to one filter of length $M L$ for the regular one \Rightarrow computationally simpler

Conclusions

- KF-BF, SKF-BF: improvement in convergence rate and tracking with respect to regular KF, SKF
- The proposed solution uses 2 filters of lengths L, M, compared to one filter of length $M L$ for the regular one \Rightarrow computationally simpler
- SKF-BF provides:
- reduced computational complexity, but also
- slower convergence rate, especially for correlated inputs with respect to KF-BF

Conclusions

- KF-BF, SKF-BF: improvement in convergence rate and tracking with respect to regular KF, SKF
- The proposed solution uses 2 filters of lengths L, M, compared to one filter of length $M L$ for the regular one \Rightarrow computationally simpler
- SKF-BF provides:
- reduced computational complexity, but also
- slower convergence rate, especially for correlated inputs with respect to KF-BF
- The experimental results indicate the good performance of the proposed algorithms

Thank you!

