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Sensor Selection

I Context: limited communication, bandwidth, and sensor
battery life; not desirable to have all sensors report their
measurements at all time-instants

I Objective: seek an optimal tradeoff between sensor activations
(over space and time) and estimation accuracy

I Research scope: offline selection algorithm, field estimation
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Related Work

I Formulation I: Minimum estimation error subject to a
constraint on total number of sensor activations [1]-[2]

I Formulation II: Minimum sensor activation subject to a
constraint on estimation performance [3]-[4]

I Formulation III (sparsity promoting): Mininum estimation
error while simultaneously penalizing number of sensor
activations [5]-[6]

[1] S. Joshi and S. Boyd, IEEE TSP, 2009

[2] Y. Mo, R. Ambrosino, and B. Sinopoli, Automatica, 2011

[3] S. P. Chepuri and G. Leus, IEEE TSP, 2015

[4] H. Godrich, A. P. Petropulu, and H. V. Poor, IEEE TSP, 2015

[5] E. Masazade, M. Fardad, and P. K. Varshney, IEEE SPL, 2012

[6] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, IEEE TSP, 2014
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Related Work (Cont.)

I Sparsity-promoting formulation [Liu et al., 2015]:

minimize J(w)︸ ︷︷ ︸
estimation error

+ γh(w)︸ ︷︷ ︸
sparsity promoting term

I γ > 0: regularization parameter

I h(w): total number of sensor activations, analogous to
cumulative energy constraint in Formulation I

I Limitations of prior formulation:

myopic (single-time) sensor scheduling, leads to successive
selections of sensors, excluding individual sensor energy constraints

I Our contribution:

development of sparsity-promoting approach for non-myopic
(multi-time) scheduling, balanced use of individual sensor energy
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Sparsity-Promoting Field Estimation

I Field estimation with 5 sensors and 1 field point of interest
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I Estimate the field intensity at the location of our interest

I Linear estimator: f̂ = Wy
W: estimator coefficient matrix
y: measurement vector
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Sparsity-Promoting Field Estimation (Cont.)

I Linear estimator: f̂ = Wy

I Distortion: J(W) = E[(f̂ − f)T (f̂ − f)]

I Nonzero columns of W =⇒ active sensors

Wy =
[
W1 W2 . . . WN

]

y1
y2
...
yN

 = W1y1 + W2y2 + · · · + WNyN

Column-cardinality of W: total number of sensor activations

h(W) , card
( [
‖W1‖`1 ‖W2‖`1 · · · ‖WN‖`1

] )
I Conventional sparsity-promoting framework [Liu et al., TSP’15]

minimize
W

1
2J(W) + γh(W)

larger γ promotes sparser sensor schedule
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Sparsity-Promoting Field Estimation (Cont.)
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Figure: (a) Sensor network and field point; (b) Sensor schedules by varying γ.

I Imbalance of energy usage: successive selections of most informative
sensors, e.g., S3 largest spatial correlation with field point(

How to strike a balance between sparsity of sensor
activations and balanced sensor energy usage?

)
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Generalized Sparsity Promoting

Generalized sparsity-promoting optimization framework

minimize
W

1
2J(W) + γh(W) + ηg(W)

γ, η: positive regularization parameters

I J(W): trace of error covariance

I h(W): total number of sensor activations (conventional)

h(W) , card
( [
‖W1‖`1 ‖W2‖`1 · · · ‖WKM‖`1

] )
K : length of time horizon; M: number of sensors

I g(W): proposed sparsity-promoting penalty function that can
discourage successive selections of the same sensors

How to define g(W)? Relationship with h(W)?
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Penalty of Successive Selections

g(W) =
∑
m

(∑
k

card(‖Wk,m‖`1)

)2

I Wk,m: column of W corresponding to observation of the
mth sensor at time k

I card(x) =

{
1 x 6= 0,
0 x = 0

I κm =
∑K

k=1 card(‖Wk,m‖`1): number of times sensor m
selected over K time steps

I g(W) = κ2m: quadratic penalty, leads to large penalty when
sensors are successively selected

Example of two sensors: (42 + 02) > (22 + 22)
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Proposed Sensor Selection Problem

minimize
W

1
2J(W) + γh(W) + ηg(W)

I J(W): MSE of linear estimator, convex quadratic

I h(W): governs the total number of sensor activations

I g(W): characterizes the cost of successive selections

I Solution: a) sensor selection schemes (column-sparsity of W)
b) optimal linear estimator for field reconstruction

I Presence of cardinality function (`0 norm), nonconvex
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Convexification

I Vectorization: W =⇒ columnwise vector w

I reweighted `1 relaxation:
card(‖wk,m‖`1) =⇒ αk,m‖wk,m‖`1

I `1 optimization problem:

minimize
w

J(w) + γ

M∑
m=1

K∑
k=1

hk,m(w) + η

M∑
m=1

gm(w),

hk,m(w) := αk,m‖wk,m‖`1 , gm(w) :=
(∑K

k=1 αk,m‖wk,m‖`1
)2

I [Prop. 1]: Problem is equivalent to convex quadratic program

minimize
x

1
2x

THx− xTh

subject to x ≤ 0,

w = Ax, A, H, h known appropriate matrices
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Fast Algorithm for QP

I Quadratic program (QP):

minimize
x

1
2x

THx− xTh

subject to x ≤ 0,~w�
minimize

x
φ(x) + ψ(x),

φ(x) = 1
2x

THx− xTh

ψ(x) =

{
0 if x ≤ 0
+∞ otherwise.

I Efficient algorithm:

1. alternating direction method of multipliers (ADMM)
2. accelerated proximal gradient algorithm (APG)

12/15



Numerical Results

I M = 5 sensors, K = 10 time steps

I Sensor schedules from the proposed sparsity-promoting framework
(γ = 1)
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Discourage successive selections of the same sensors for large η
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Numerical Results

Approach with and without avoiding successive selections
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Penalty on successive selection by varying η, γ = 0

Conventional sparsity promoting by varying γ, η = 0

Higher MSE, since successive selections of the most informative sensors are
prevented for balanced energy usage
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Conclusion

Summary

I Novel sparsity-promoting penalty function that discourages
successive selection of the same group of sensors

I Convexity analysis, QP with ADMM or APG

Future work

I Study on the choice of sparsity-promoting parameters for
achieving desired sparsity levels

I Decentralized sensor scheduling framework
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