## Energy-Aware Sensor Selection in Field Reconstruction

### Aditya Vempaty IBM Thomas J. Watson Research Center



Sijia Liu Syracuse Univ.



Makan Fardad Syracuse Univ.



Engin Masazade Yeditepe Univ.



Pramod Varshney Syracuse Univ.

14 December, 2015







#### Introduction

Background Related Work Sparsity-Promoting Field Estimation

## Proposed Energy-Aware Framework

Penalty for Successive Selection Energy-Aware Sensor Selection Problem

## **Optimization Method**

Convexification QP & ADMM/APG

### Numerical Results

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





- Context: limited communication, bandwidth, and sensor battery life; not desirable to have all sensors report their measurements at all time-instants
- Objective: seek an optimal tradeoff between sensor activations (over space and time) and estimation accuracy
- ► Research scope: offline selection algorithm, field estimation





- Formulation I: Minimum estimation error subject to a constraint on total number of sensor activations [1]-[2]
- Formulation II: Minimum sensor activation subject to a constraint on estimation performance [3]-[4]
- Formulation III (sparsity promoting): Mininum estimation error while *simultaneously penalizing* number of sensor activations [5]-[6]

- [1] S. Joshi and S. Boyd, IEEE TSP, 2009
- [2] Y. Mo, R. Ambrosino, and B. Sinopoli, Automatica, 2011
- [3] S. P. Chepuri and G. Leus, IEEE TSP, 2015
- [4] H. Godrich, A. P. Petropulu, and H. V. Poor, IEEE TSP, 2015
- [5] E. Masazade, M. Fardad, and P. K. Varshney, IEEE SPL, 2012
- [6] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, IEEE TSP, 2014

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●





4/15

Sparsity-promoting formulation [Liu *et al.*, 2015]:



- $\gamma > 0$ : regularization parameter
- h(w): total number of sensor activations, analogous to cumulative energy constraint in Formulation I
- Limitations of prior formulation:

myopic (single-time) sensor scheduling, leads to successive selections of sensors, excluding individual sensor energy constraints

Our contribution:

development of sparsity-promoting approach for non-myopic (multi-time) scheduling, balanced use of individual sensor energy





Field estimation with 5 sensors and 1 field point of interest



- Estimate the field intensity at the location of our interest
- Linear estimator:  $\hat{\mathbf{f}} = \mathbf{W}\mathbf{y}$ 
  - W: estimator coefficient matrix
  - y: measurement vector





- Linear estimator:  $\hat{\mathbf{f}} = \mathbf{W}\mathbf{y}$
- Distortion:  $J(\mathbf{W}) = \mathbb{E}[(\hat{\mathbf{f}} \mathbf{f})^T (\hat{\mathbf{f}} \mathbf{f})]$
- ► Nonzero columns of  $\mathbf{W} \implies$  active sensors  $\mathbf{W}\mathbf{y} = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \dots & \mathbf{W}_N \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \mathbf{W}_1 y_1 + \mathbf{W}_2 y_2 + \dots + \mathbf{W}_N y_N$

Column-cardinality of **W**: total number of sensor activations  $h(\mathbf{W}) \triangleq \operatorname{card}\left( \begin{bmatrix} \|\mathbf{W}_1\|_{\ell_1} & \|\mathbf{W}_2\|_{\ell_1} & \cdots & \|\mathbf{W}_N\|_{\ell_1} \end{bmatrix} \right)$ 

Conventional sparsity-promoting framework [Liu et al., TSP'15]

minimize 
$$\frac{1}{2}J(\mathbf{W}) + \gamma h(\mathbf{W})$$

larger  $\gamma$  promotes sparser sensor schedule

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 → 今々で



## Sparsity-Promoting Field Estimation (Cont.)





Figure: (a) Sensor network and field point; (b) Sensor schedules by varying  $\gamma$ .

▶ Imbalance of energy usage: successive selections of most informative sensors, e.g., *S*<sub>3</sub> largest spatial correlation with field point

How to strike a balance between sparsity of sensor activations and balanced sensor energy usage?





## Generalized sparsity-promoting optimization framework

minimize 
$$\frac{1}{2}J(\mathbf{W}) + \gamma h(\mathbf{W}) + \eta g(\mathbf{W})$$

 $\gamma,\eta:$  positive regularization parameters

- ► J(W): trace of error covariance
- h(W): total number of sensor activations (conventional)

$$h(\mathbf{W}) \triangleq \mathsf{card}\left( \begin{bmatrix} \|\mathbf{W}_1\|_{\ell_1} & \|\mathbf{W}_2\|_{\ell_1} & \cdots & \|\mathbf{W}_{\mathcal{K}\mathcal{M}}\|_{\ell_1} \end{bmatrix} \right)$$

K : length of time horizon; M: number of sensors

g(W): proposed sparsity-promoting penalty function that can discourage successive selections of the same sensors

How to define  $g(\mathbf{W})$ ? Relationship with  $h(\mathbf{W})$ ?



# Penalty of Successive Selections



$$g(\mathbf{W}) = \sum_{m} \left( \sum_{k} \operatorname{card}(\|\mathbf{W}_{k,m}\|_{\ell_1}) \right)^2$$

► W<sub>k,m</sub>: column of W corresponding to observation of the mth sensor at time k

$$\blacktriangleright \operatorname{card}(x) = \begin{cases} 1 & x \neq 0, \\ 0 & x = 0 \end{cases}$$

- $\kappa_m = \sum_{k=1}^{K} \operatorname{card}(\|\mathbf{W}_{k,m}\|_{\ell_1})$ : number of times sensor m selected over K time steps
- $g(\mathbf{W}) = \kappa_m^2$ : quadratic penalty, leads to large penalty when sensors are successively selected

Example of two sensors:  $(4^2 + 0^2) > (2^2 + 2^2)$ 





minimize 
$$\frac{1}{2}J(\mathbf{W}) + \gamma h(\mathbf{W}) + \eta g(\mathbf{W})$$

- ► J(W): MSE of linear estimator, convex quadratic
- h(W): governs the total number of sensor activations
- g(W): characterizes the cost of successive selections
- Solution: a) sensor selection schemes (column-sparsity of W)
   b) optimal linear estimator for field reconstruction
- Presence of cardinality function ( $\ell_0$  norm), nonconvex



## Convexification



- Vectorization:  $\mathbf{W} \Longrightarrow$  columnwise vector  $\mathbf{w}$
- reweighted  $\ell_1$  relaxation:

$$\operatorname{card}(\|\mathbf{w}_{k,m}\|_{\ell_1}) \Longrightarrow \alpha_{k,m} \|\mathbf{w}_{k,m}\|_{\ell_1}$$

l<sub>1</sub> optimization problem:

minimize 
$$J(\mathbf{w}) + \gamma \sum_{m=1}^{M} \sum_{k=1}^{K} h_{k,m}(\mathbf{w}) + \eta \sum_{m=1}^{M} g_m(\mathbf{w}),$$

$$h_{k,m}(\mathbf{w}) := lpha_{k,m} \|\mathbf{w}_{k,m}\|_{\ell_1}, \ g_m(\mathbf{w}) := \left(\sum_{k=1}^K lpha_{k,m} \|\mathbf{w}_{k,m}\|_{\ell_1}
ight)^2$$

▶ [Prop. 1]: Problem is equivalent to convex quadratic program

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x} - \mathbf{x}^{T} \mathbf{h} \\ \text{subject to} & \mathbf{x} \leq \mathbf{0}, \end{array}$$

w = Ax, A, H, h known appropriate matrices

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のみで





12/15

Quadratic program (QP):

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \frac{1}{2}\mathbf{x}^{T}\mathbf{H}\mathbf{x} - \mathbf{x}^{T}\mathbf{h} \\ \text{subject to} & \mathbf{x} \leq 0, \\ & & & \\ & & & \\ \\ \text{minimize} & \phi(\mathbf{x}) + \psi(\mathbf{x}), \\ & & \phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{T}\mathbf{H}\mathbf{x} - \mathbf{x}^{T}\mathbf{h} \\ & & \phi(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \leq 0 \\ +\infty & \text{otherwise.} \end{cases} \end{array}$ 

Efficient algorithm:

- 1. alternating direction method of multipliers (ADMM)
- 2. accelerated proximal gradient algorithm (APG)





- M = 5 sensors, K = 10 time steps
- $\blacktriangleright$  Sensor schedules from the proposed sparsity-promoting framework (  $\gamma=1)$





## **Numerical Results**



Approach with and without avoiding successive selections



Higher MSE, since successive selections of the most informative sensors are prevented for balanced energy usage

▲ロ → ▲理 → ▲理 → ▲理 → ▲ ● ● ● ● ●

14/15







15/15

### Summary

- Novel sparsity-promoting penalty function that discourages successive selection of the same group of sensors
- Convexity analysis, QP with ADMM or APG

#### Future work

 Study on the choice of sparsity-promoting parameters for achieving desired sparsity levels

・ロト ・四ト ・ヨト ・ヨト

Decentralized sensor scheduling framework