The Asynchronous Power Iteration: A Graph Signal Perspective

Oguzhan Teke P. P. Vaidyanathan

Department of Electrical Engineering California Institute of Technology

43rd International Conference on Acoustics, Speech and Signal Processing

Outline

1 Graph Signal Processing

- 2 Autonomous Networks and Graph Signals
 - Asynchronous Updates
 - Convergence Results
 - Asynchronicity and Smoothness
 - Distributed Computation of the Graph Eigenvectors

1 Graph Signal Processing

- 2 Autonomous Networks and Graph Signals
 - Asynchronous Updates
 - Convergence Results
 - Asynchronicity and Smoothness
 - Distributed Computation of the Graph Eigenvectors

1 Graph Signal Processing

- 2 Autonomous Networks and Graph Signals
 - Asynchronous Updates
 - Convergence Results
 - Asynchronicity and Smoothness
 - Distributed Computation of the Graph Eigenvectors

Outline

1 Graph Signal Processing

- 2 Autonomous Networks and Graph Signals
 - Asynchronous Updates
 - Convergence Results
 - Asynchronicity and Smoothness
 - Distributed Computation of the Graph Eigenvectors

 \boldsymbol{A} is the graph operator

A is the graph operator

Adjacency matrix¹ : AGraph Laplacians² : L, or \mathcal{L} Other selections³

¹ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," *IEEE Trans. S. P. vol. 61, no. 7, 2013*

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

A is the graph operator

Adjacency matrix¹ : AGraph Laplacians² : L, or \mathcal{L} Other selections³

$$A = V \Lambda V^{-1}$$

¹ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

¹ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," *IEEE Trans. S. P. vol. 61, no. 7, 2013*

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

Outline

1 Graph Signal Processing

2 Autonomous Networks and Graph Signals

- Asynchronous Updates
- Convergence Results
- Asynchronicity and Smoothness
- Distributed Computation of the Graph Eigenvectors

A = Graph Operator

$$x_k$$
 = Signal on the Graph

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \; \boldsymbol{x}_{k-1}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \; \boldsymbol{x}_{k-1}$$

 $x_k[i] = \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}$

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \ oldsymbol{x}_{k-1} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \ x_{k-1}[j] \end{aligned}$$

 x_k = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, i \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, i \end{aligned}$$

 x_k = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, i \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, i \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, i \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, i \end{aligned}$$

 x_k = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

 x_k = Signal on the Graph

$$\boldsymbol{x}_k = \boldsymbol{A} \ \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k$$
 = Signal on the Graph

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

A = Graph Operator

$$\boldsymbol{x}_k = \boldsymbol{A} \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

 \boldsymbol{x}_k = Signal on the Graph

Recurrent NN (Hopfield Model)

$$x_k[i] = \theta \left(\boldsymbol{a}_i \; \boldsymbol{x}_{k-1} \right)$$

A = Graph Operator

$$\boldsymbol{x}_k = \boldsymbol{A} \; \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\lim_{k\to\infty} \boldsymbol{x}_k = ?$$

 x_k = Signal on the Graph

Recurrent NN (Hopfield Model)

$$x_k[i] = \theta \left(\boldsymbol{a}_i \; \boldsymbol{x}_{k-1} \right)$$

A = Graph Operator

$$\boldsymbol{x}_k = \boldsymbol{A} \; \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$x_k$$
 = Signal on the Graph

Recurrent NN (Hopfield Model)

$$x_k[i] = \theta \left(\boldsymbol{a}_i \; \boldsymbol{x}_{k-1} \right)$$

$$\lim_{k\to\infty} \boldsymbol{x}_k = ?$$

Synchronous case:

 $\lambda = 1, \qquad \qquad |\lambda| < 1$

¹ Hopfield, "Neural networks and physical systems with emergent collective computational abilities," *PNAS*, 1982

A = Graph Operator

$$\boldsymbol{x}_k = \boldsymbol{A} \; \boldsymbol{x}_{k-1}$$

$$egin{aligned} x_k[i] &= oldsymbol{a}_i \, oldsymbol{x}_{k-1} & orall \, oldsymbol{i} \ &= \sum_{j \in \mathcal{N}(i)} a_{i,j} \, x_{k-1}[j] & orall \, oldsymbol{i} \, oldsymbol{i} \ \end{aligned}$$

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

 x_k = Signal on the Graph

Recurrent NN (Hopfield Model)

$$x_k[i] = \theta \left(\boldsymbol{a}_i \; \boldsymbol{x}_{k-1} \right)$$

$$\lim_{k\to\infty} \boldsymbol{x}_k = ?$$

Synchronous case:

 $\lambda = 1$.

Corollary

Synchronous \implies Asynchronous

¹ Hopfield, "Neural networks and physical systems with emergent collective computational abilities," PNAS, 1982

 $|\lambda| < 1$

$$x_k[i] = \begin{cases} a_i \ x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$x_k[i] = \begin{cases} a_i \ x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

 \mathcal{T} = random subset

$$x_k[i] = \begin{cases} a_i \ x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

 \mathcal{T} = random subset Size = t

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

\mathcal{T} = random subset Content Size = t

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$
Content Size = t
Equally likely
among $\binom{N}{t}$

$$x_k[i] = \begin{cases} \boldsymbol{a}_i \ \boldsymbol{x}_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$
Content
Size = t
Equally likely
among $\binom{N}{t}$

$$\mathbb{P}(\mathcal{T}) = \binom{N}{t}^{-1}$$

 x_i

 $1 \leq t \leq N$

 x_{i_1}

 x_i

$$x_{k}[i] = \begin{cases} a_{i} x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$

$$\mathcal{C} \text{ content } Size = t$$
Equally likely
$$among \binom{N}{t}$$

$$\mathbb{P}(\mathcal{T}) = \binom{N}{t}^{-1}$$

 \frown

$$x_{k}[i] = \begin{cases} a_{i} x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$

$$\mathcal{T} = randm \ subset$$

$$\mathcal{T} = random \ subset$$
\frown

The Form of the Asynchronous Updates

$$x_{k}[i] = \begin{cases} a_{i} x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$

$$\mathcal{T} = random \ subset$$

$$\mathcal{C} \text{content} \qquad Size = t$$

$$\text{Equally likely}$$

$$\operatorname{among} \binom{N}{t}$$

$$\mathbb{P}(\mathcal{T}) = \binom{N}{t}^{-1}$$

$$(x_{i_{3}})$$

$$\mathbb{P}(\mathcal{T}) = \binom{N}{t}^{-1}$$

 \sim

The Form of the Asynchronous Updates

$$x_{k}[i] = \begin{cases} a_{i} x_{k-1}, & i \in \mathcal{T}, \\ x_{k-1}[i], & i \notin \mathcal{T}. \end{cases}$$

$$\mathcal{T} = random \ subset$$

The Form of the Asynchronous Updates

 \boldsymbol{x}_0

 $x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_k \rightarrow \cdots$

$$A = V \Lambda V^*$$

$$\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$$

$$A = V \Lambda V^*$$

$$\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$$

Theorem

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N} \left(\lambda_j - 1\right)\right)^k \hat{x}_{0,j}$$

$$A = V \Lambda V^*$$

$$\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$$

Theorem

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N} \left(\lambda_j - 1\right)\right)^k \hat{x}_{0,j}$$

$$t = N \qquad \Longrightarrow \qquad \widehat{x}_{k,j} = \lambda_j^k \ \widehat{x}_{0,j}$$

$$A = V \Lambda V^*$$

$$\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$$

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N} \left(\lambda_j - 1\right)\right)^k \hat{x}_{0,j}$$
$$t = N \implies \hat{x}_{k,j} = \lambda_j^k \hat{x}_{0,j}$$

$$\left| 1 + \frac{t}{N} \left(\lambda_j - 1 \right) \right| < 1$$

$$\downarrow$$

$$\lim_{k \to \infty} \mathbb{E}[\hat{x}_{k,j}] = 0$$

 $A = V \Lambda V^*$

 $\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N}(\lambda_j - 1)\right)^k \hat{x}_{0,j}$$

$$t=N \qquad \Longrightarrow \qquad \widehat{x}_{k,\,j}=\lambda_j^k \ \widehat{x}_{0,\,j}$$

$$1 m(\lambda)$$

$$t = 1$$

$$t = 2$$

$$t = N$$

$$1 - N$$

$$1 - N$$

$$1$$

$$Re(\lambda)$$

$$\left| \begin{array}{c} \left| 1 + \frac{t}{N} \left(\lambda_{j} - 1 \right) \right| < 1 \\ \downarrow \\ \lim_{k \to \infty} \mathbb{E}[\widehat{x}_{k,j}] = 0 \end{array} \right|$$

 $A = V \Lambda V^*$

 $\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$

At the k^{th} iteration,

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N}(\lambda_j - 1)\right)^k \hat{x}_{0,j}$$

$$t=N \qquad \Longrightarrow \qquad \widehat{x}_{k,\,j}=\lambda_j^k \ \widehat{x}_{0,\,j}$$

$$\begin{vmatrix} 1 + \frac{t}{N} (\lambda_j - 1) \\ \downarrow \\ \lim_{k \to \infty} \mathbb{E}[\hat{x}_{k,j}] = 0 \end{vmatrix}$$

 $\lambda_j = 1 \implies \mathbb{E}[\hat{x}_{k,j}] = \hat{x}_{0,j}$

 $A = V \Lambda V^*$

 $\widehat{x}_{k,\,j} = \boldsymbol{v}_j^* \; \boldsymbol{x}_k$

$$\mathbb{E}[\hat{x}_{k,j}] = \left(1 + \frac{t}{N}(\lambda_j - 1)\right)^k \hat{x}_{0,j}$$

$$t = N \qquad \Longrightarrow \qquad \widehat{x}_{k,\,j} = \lambda_j^k \ \widehat{x}_{0,\,j}$$

$$\begin{vmatrix} 1 + \frac{t}{N} (\lambda_j - 1) \\ \downarrow \\ \lim_{k \to \infty} \mathbb{E}[\hat{x}_{k,j}] = 0 \end{vmatrix}$$

$$\lambda_j = 1 \implies \mathbb{E}[\hat{x}_{k,j}] = \hat{x}_{0,j}$$

Not $|\lambda_j| = 1$

Theorem

At the k^{th} iteration,

 $\mathbb{E}\left[\|oldsymbol{r}_k\|_2^2
ight] \leqslant \Gamma^k \|oldsymbol{r}_0\|_2^2$

Theorem

At the k^{th} iteration,

$$\mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] \leqslant \Gamma^k \|\boldsymbol{r}_0\|_2^2$$

$$\Gamma = \max_{1 \le j \le N \cdot M} 1 + \frac{t}{N} \left(|\lambda_j|^2 - 1 + \delta_T \left(\rho - 1 \right) |\lambda_j - 1|^2 \right)$$

Theorem

At the k^{th} iteration,

$$\mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] \leqslant \Gamma^k \|\boldsymbol{r}_0\|_2^2$$

$$\Gamma = \max_{1 \leq j \leq N-M} 1 + \frac{t}{N} \left(|\lambda_j|^2 - 1 + \frac{\delta_T}{N} \left(\rho - 1 \right) |\lambda_j - 1|^2 \right)$$

Theorem

At the k^{th} iteration,

$$\mathbb{E}\big[\|\boldsymbol{r}_k\|_2^2 \big] \leqslant \Gamma^k \|\boldsymbol{r}_0\|_2^2$$

$$\Gamma = \max_{1 \leq j \leq N-M} 1 + \frac{t}{N} \left(|\lambda_j|^2 - 1 + \delta_T \left(\rho - 1 \right) |\lambda_j - 1|^2 \right)$$

Theorem

At the k^{th} iteration,

$$\mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] \leqslant \Gamma^k \|\boldsymbol{r}_0\|_2^2$$

$$\Gamma = \max_{1 \le j \le N-M} 1 + \frac{t}{N} \left(|\lambda_j|^2 - 1 + \delta_T \left(\rho - 1 \right) |\lambda_j - 1|^2 \right)$$

$$\rho = \left\| \boldsymbol{U}^* \operatorname{diag}(\boldsymbol{U} \boldsymbol{U}^*) \boldsymbol{U} \right\|_2$$

Theorem

At the k^{th} iteration,

$$\gamma^k \| \boldsymbol{r}_0 \|_2^2 \leqslant \mathbb{E} \left[\| \boldsymbol{r}_k \|_2^2
ight] \leqslant \Gamma^k \| \boldsymbol{r}_0 \|_2^2$$

$$\Gamma = \max_{1 \le j \le N \cdot M} 1 + \frac{t}{N} \left(|\lambda_j|^2 - 1 + \delta_T \left(\rho - 1 \right) |\lambda_j - 1|^2 \right)$$

$$\rho = \left\| \boldsymbol{U}^* \operatorname{diag}(\boldsymbol{U} \boldsymbol{U}^*) \boldsymbol{U} \right\|_2$$

Corollary

Corollary

$$\left|\lambda - \frac{\alpha}{\alpha + 1}\right| < \frac{1}{\alpha + 1}$$

Corollary

$$\left|\lambda - \frac{lpha}{lpha + 1}
ight| < \frac{1}{lpha + 1}$$
 Then, $\lim_{k o \infty} \mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] = 0.$

Corollary

$$\left|\lambda - \frac{lpha}{lpha + 1}\right| < \frac{1}{lpha + 1}$$
 Then, $\lim_{k \to \infty} \mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] = 0.$

$$\alpha = \delta_T \ (\rho - 1)$$

Corollary

$$\left|\lambda - \frac{\alpha}{\alpha + 1}\right| < \frac{1}{\alpha + 1}$$
 Then, $\lim_{k \to \infty} \mathbb{E}\left[\|\boldsymbol{r}_k\|_2^2\right] = 0.$

$$\alpha = \delta_T \ (\rho - 1)$$

$$\rho = \left\| \boldsymbol{U}^* \operatorname{diag}(\boldsymbol{U}\boldsymbol{U}^*) \boldsymbol{U} \right\|_2 \leq 1$$
$$0 \leq \delta_T = \frac{N-t}{N-1} \leq 1$$

Corollary

Corollary

Corollary

Corollary

If all non-unit eigenvalues ($\lambda \neq 1$) satisfy the following:

¹ Percha et al., "Transition from local to global phase synchrony in small world NN and its possible impl. for epilepsy," *Phys.Rev.E*, 2005
 ² Uhlhaas & Singer, "Neural synchrony in brain disorders: ..., "*Neuron, 2006* 10/15

Convergence Results

Convergence Results

Convergence Results

Convergence Results

A Toy Example

 $(A = V\Lambda V^*)$

 $(A = V\Lambda V^*)$

Definition (Smoothness Set)

 $(A = V\Lambda V^*)$

Definition (Smoothness Set)

A graph signal $oldsymbol{x} \in \mathcal{S}_\epsilon$

 $(A = V\Lambda V^*)$

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leq \epsilon \quad \forall j$

 $(A = V\Lambda V^*)$

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| \; |\lambda_j - 1| \leqslant \epsilon \quad \forall j$

 $TV(v) = |\lambda - 1|$ [1]

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leq \epsilon \quad \forall j$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Definition (Smoothness Set)

A graph signal $x \in S_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leqslant \epsilon \quad \forall j$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

If
$$x \in \mathcal{S}_{\epsilon}$$
, then

Definition (Smoothness Set)

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} x \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| \ |\lambda_j - 1| \leqslant \epsilon \quad \forall j$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

$$\epsilon \approx 0 \implies y \approx x$$

Definition (Smoothness Set)

 $\begin{array}{l} \textbf{A graph signal } \boldsymbol{x} \in \mathcal{S}_{\epsilon} \\ & \updownarrow \\ & \widehat{\boldsymbol{x}} = \boldsymbol{V}^{*}\boldsymbol{x} \text{ satisfies} \\ & |\widehat{x}_{j}| \; |\lambda_{j} - 1| \; \leqslant \; \epsilon \qquad \forall \, j \end{array}$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

- $\epsilon \approx 0 \qquad \Longrightarrow \qquad \boldsymbol{y} \approx \boldsymbol{x}$
- $\epsilon \gg 0 \implies \textit{Inconclusive}$

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leq \epsilon \quad \forall j$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

 $\epsilon \approx 0 \qquad \Longrightarrow \qquad \boldsymbol{y} \approx \boldsymbol{x}$

 $\epsilon \gg 0 \implies \textit{Inconclusive}$

$$\boldsymbol{r}_k = \boldsymbol{x}_k - \boldsymbol{V}_1 \, \boldsymbol{V}_1^* \, \boldsymbol{x}_k$$

Definition (Smoothness Set)

A graph signal $x \in \mathcal{S}_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leqslant \epsilon \quad \forall j$

 $TV(\boldsymbol{v}) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

- $\epsilon \approx 0 \qquad \Longrightarrow \qquad \boldsymbol{y} \approx \boldsymbol{x}$
- $\epsilon \gg 0 \implies \textit{Inconclusive}$

$$\boldsymbol{r}_k = \boldsymbol{x}_k - \boldsymbol{V}_1 \, \boldsymbol{V}_1^* \, \boldsymbol{x}_k$$

$$\lim_{k\to\infty} \boldsymbol{r}_k = \boldsymbol{0} \implies \lim_{k\to\infty} \boldsymbol{x}_k \in \mathcal{S}_0$$

Definition (Smoothness Set)

A graph signal $x \in S_{\epsilon}$ $\widehat{x} = V^*x \text{ satisfies}$ $|\widehat{x}_j| |\lambda_j - 1| \leq \epsilon \quad \forall j$ $TV(v) = |\lambda - 1| \quad [1]$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

$$\epsilon \approx 0 \qquad \Longrightarrow \qquad \boldsymbol{y} \approx \boldsymbol{x}$$

 $\epsilon \gg 0 \implies \text{Inconclusive}$

$$\boldsymbol{r}_k = \boldsymbol{x}_k - \boldsymbol{V}_1 \, \boldsymbol{V}_1^* \, \boldsymbol{x}_k$$

$$\lim_{k\to\infty} \boldsymbol{r}_k = \boldsymbol{0} \implies \lim_{k\to\infty} \boldsymbol{x}_k \in \mathcal{S}_0$$

Definition (Smoothness Set)

A graph signal $oldsymbol{x} \in \mathcal{S}_{\epsilon}$ $\widehat{oldsymbol{x}}$ $\widehat{oldsymbol{x}} = oldsymbol{V}^* oldsymbol{x} \ \text{satisfies}$ $|\widehat{x}_j| \ |\lambda_j - 1| \leqslant \epsilon \qquad \forall j$

$$y_i = \begin{cases} (\boldsymbol{A}\boldsymbol{x})_i, & i \in \mathcal{T}, \\ x_i, & i \notin \mathcal{T}, \end{cases}$$

 $(A = V\Lambda V^*)$

Theorem

 $\begin{array}{ll} \textit{If} \hspace{0.2cm} \boldsymbol{x} \in \mathcal{S}_{\epsilon}, \hspace{0.2cm} \textit{then} \\ \| \widehat{\boldsymbol{y}} - \widehat{\boldsymbol{x}} \|_{\infty} \hspace{0.2cm} \leqslant \hspace{0.2cm} \epsilon \hspace{0.2cm} |\mathcal{T}| \hspace{0.2cm} \| \boldsymbol{V} \|_{\max} \| \boldsymbol{V} \|_{\infty} \end{array}$

- $\epsilon \approx 0 \qquad \Longrightarrow \qquad \boldsymbol{y} \approx \boldsymbol{x}$
- $\epsilon \gg 0 \implies Inconclusive$

$$\boldsymbol{r}_k = \boldsymbol{x}_k - \boldsymbol{V}_1 \, \boldsymbol{V}_1^* \, \boldsymbol{x}_k$$

$$\lim_{k o \infty} oldsymbol{r}_k = oldsymbol{0} \implies \lim_{k o \infty} oldsymbol{x}_k \in \mathcal{S}_0$$

A Asynchronous

$\lambda = 1$	A
$ \lambda(\boldsymbol{A}) < 1$	Asynchronous

$$\begin{aligned} \lambda &= 1\\ |\lambda(\boldsymbol{A})| < 1 \end{aligned}$$

$$\xrightarrow[A]{A synchronous}$$

 $\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$

 $\lambda = 1$ A $|\lambda(A)| < 1$ Asynchronous

$$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$$

$$H(\mathbf{A}) = \sum_{k=0}^{L} h_k \mathbf{A}^k$$

Asynchronous

$\begin{aligned} \lambda &= 1 \\ \lambda(\boldsymbol{A}) < 1 \end{aligned}$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$H(\lambda_j) = 1$ $ H(\lambda_i) < 1$	$H(oldsymbol{A}) = \sum_{k=0}^{L} h_k oldsymbol{A}^k$ Asynchronous	

$\begin{aligned} \lambda &= 1 \\ \lambda(\boldsymbol{A}) < 1 \end{aligned}$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$H(\lambda_j) = 1$ $ H(\lambda_i) < 1$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

$\begin{aligned} \lambda &= 1 \\ \lambda(\boldsymbol{A}) < 1 \end{aligned}$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1\\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

$\begin{aligned} \lambda &= 1 \\ \lambda(\boldsymbol{A}) < 1 \end{aligned}$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A}-\boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1\\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

Solutions are not unique!

$\begin{array}{l} \lambda = 1 \\ \lambda(\boldsymbol{A}) < 1 \end{array}$	\xrightarrow{A} Asynchronous	$\lim_{k \to \infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1\\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

Solutions are not unique!

What is the minimum possible degree?

$\lambda = 1 \ \lambda(oldsymbol{A}) < 1$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1 \\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

- Solutions are not unique!
- What is the minimum possible degree?
- How to construct? (Optimality)

$\begin{array}{l} \lambda = 1 \\ \lambda(\boldsymbol{A}) < 1 \end{array}$	\xrightarrow{A} Asynchronous	$\lim_{k \to \infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1\\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

- Solutions are not unique!
- What is the minimum possible degree?
- How to construct? (Optimality)
- Rate of convergence

$\begin{array}{l} \lambda = 1 \\ \lambda(\boldsymbol{A}) < 1 \end{array}$	\xrightarrow{A} Asynchronous	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A}-\boldsymbol{I})$
$\begin{aligned} H(\lambda_j) &= 1\\ H(\lambda_i) < 1 \end{aligned}$	$\frac{H(\boldsymbol{A}) = \sum_{k=0}^{L} h_k \boldsymbol{A}^k}{\text{Asynchronous}}$	$\lim_{k\to\infty} \boldsymbol{x}_k \in \operatorname{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I})$

- Solutions are not unique!
- What is the minimum possible degree?
- How to construct? (Optimality)
- Rate of convergence

Trade-offs (*Complexity* v.s. Rate) (*Spectral Information* v.s. Rate)

Outline

1 Graph Signal Processing

- 2 Autonomous Networks and Graph Signals
 - Asynchronous Updates
 - Convergence Results
 - Asynchronicity and Smoothness
 - Distributed Computation of the Graph Eigenvectors

3 Conclusion

- Asynchronous power iteration
- Random update model
- Convergence behavior
 - Eigenspace geometry
 - Amount of asynchronicity

- Asynchronous power iteration
- Random update model
- Convergence behavior
 - Eigenspace geometry
 - Amount of asynchronicity

Tighter bounds

- Asynchronous power iteration
- Random update model
- Convergence behavior
 - Eigenspace geometry
 - Amount of asynchronicity

- Tighter bounds
- Understanding of the eigenspaces

- Asynchronous power iteration
- Random update model
- Convergence behavior
 - Eigenspace geometry
 - Amount of asynchronicity

- Tighter bounds
- Understanding of the eigenspaces

