ON THE ROLE OF THE BOUNDED LEMMA IN THE SDP FORMULATION OF ATOMIC NORM PROBLEMS

IEEE Signal Processing Letters, vol.24, no.7, July, 2017
Oguzhan Teke, Palghat P. Vaidyanathan
oteke@caltech.edu, ppvnath@systems.caltech.edu

What is this study about?

-Atomic norm is a useful abstraction [1]

- Tractable SDP formulations exist for line spectra [2]
- State-Space Models \& DTBL [3]
- Equivalence between two existential results [4]

Atomic Norm

$\mathcal{A} \Rightarrow$ Dictionary $\quad\|\boldsymbol{x}\|_{\mathcal{A}}=\inf \{t>0 \mid \boldsymbol{x} \in t \cdot \operatorname{conv}(\mathcal{A})\}$

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{ll}
\boldsymbol{I} & -\boldsymbol{I}
\end{array}\right] \\
\operatorname{conv}(\mathcal{A})=\ell_{1}-\text { ball } \\
\|\boldsymbol{x}\|_{\mathcal{A}}=\|\boldsymbol{X}\|_{1}
\end{gathered}
$$

$\mathcal{A}=$ Rank-1 matrices

$$
\mathcal{A}=\text { Orthogonal matrices }
$$

$$
\boldsymbol{x}=\sum_{i} c_{i} \boldsymbol{a}_{i} \quad \Longrightarrow
$$

$$
\|\boldsymbol{X}\|_{\mathcal{A}}=\min _{c_{i}} \sum_{i}\left|c_{i}\right|
$$

Atomic Norm Minimization Problems

$$
\begin{array}{ccc}
\min _{\boldsymbol{X}} \quad\|\boldsymbol{X}\|_{\mathcal{A}} & \text { s.t. } \quad \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x} \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{x} & & \mathbb{\sharp} \\
\max _{\boldsymbol{Z}} & \langle\boldsymbol{y}, \boldsymbol{z}\rangle & \text { s.t. }\left\|\boldsymbol{\Phi}^{*} \boldsymbol{z}\right\|_{\mathcal{A}}^{*} \leq 1 \\
\|\boldsymbol{X}\|_{\mathcal{A}}^{*}= & \sup _{\boldsymbol{a} \in \mathcal{A}}\langle\boldsymbol{x}, \boldsymbol{a}\rangle
\end{array}
$$

Toeplitz Operator and lts Adjoint

$$
T(\boldsymbol{\mu})=\left[\begin{array}{cccc}
\mu_{1} & \mu_{2} & \cdots & \mu_{N} \\
\mu_{2}^{*} & \mu_{1} & \cdots & \mu_{N-1} \\
\cdot & \cdot & \cdot & \cdot \\
\mu_{N}^{*} & \mu_{N-1}^{*} & \cdots & \mu_{1}
\end{array}\right], \quad T^{\dagger}(\boldsymbol{Q})=\left[\begin{array}{l}
\cdot \\
\sum_{i=1}^{N-j} Q_{i, i+j} \\
\cdot
\end{array}\right]
$$

Line Spectrum Estimation

State-Space Models

$x_{n}=\sum_{k=1}^{K} c_{k} e^{j \pi n f_{k}}, \quad n=0, \cdots, N-1, \quad c_{k} \in \mathcal{C}$

Caratheodary method

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
x(K-1) & x(K-2) & \cdots & x(0) \\
x(K) & x(K-1) & \cdots & x(1) \\
x(\partial K) & x(K) & \cdots & x(K)
\end{array}\right]} \\
& \underbrace{[x(2 K-1) x(2 K-2) \cdots x(K)]}_{\boldsymbol{X} \in \mathcal{C}^{(K+1) \times K}} \quad \boldsymbol{S}_{x x}=\left[\begin{array}{ll}
\boldsymbol{V}_{s} & \boldsymbol{V}_{n}
\end{array}\right] \boldsymbol{\Lambda}\left[\begin{array}{ll}
\boldsymbol{V}_{s} & \boldsymbol{V}_{n}
\end{array}\right]^{*} \\
& \boldsymbol{X} \in \mathcal{C}^{(K+1) \times K} \\
& \boldsymbol{u}^{*} \boldsymbol{X}=\mathbf{0} \quad \boldsymbol{w}(f)=\left[\begin{array}{ll}
1 & \left.e^{j \pi f} \cdots e^{j \pi(N-1) f}\right]^{T}
\end{array}\right. \\
& U(f)=\sum_{k=0}^{K} u(k) e^{-j \pi f k}=0 \quad P(f)=\frac{1}{\left\|\boldsymbol{V}_{n}^{*} \boldsymbol{w}(f)\right\|_{2}^{2}}
\end{aligned}
$$

Atomic Dictionary for Line Spectrum

$$
\begin{aligned}
& \boldsymbol{a}(f, \phi)=e^{j \pi \phi}\left[1 e^{j \pi f} e^{j \pi 2 f} \cdots e^{j \pi(N-1) f}\right]^{T} \in \mathcal{C}^{N \times 1} \\
& \mathcal{A}=\{\boldsymbol{a}(f, \phi) \mid f \in[-1,1), \phi \in[0,2)\} . \\
& \|\boldsymbol{x}\|_{\mathcal{A}}^{*}=\sup _{f, \phi} e^{-j \pi \phi} \underbrace{\sum_{n=0}^{N-1} x_{n} e^{-j \pi n f}}_{X(f)}=\sup _{f}|X(f)| \\
& \|\boldsymbol{x}\|_{\mathcal{A}}^{*} \leq \tau \quad \Longleftrightarrow \quad|X(f)| \leq \tau \quad \forall f .
\end{aligned}
$$

Non-Negative Trigonometric Polynomials

$$
X(f) \text { is a polynomial in } e^{-j \pi f}
$$

$|X(f)| \leq \tau \Longleftrightarrow \exists \boldsymbol{Q}$ s.t. $\sum_{i=1}^{N-j} Q_{i, i+j}=\tau^{2} \delta(j),\left[\begin{array}{cc}\boldsymbol{Q} & \boldsymbol{x} \\ \boldsymbol{x}^{*} & 1\end{array}\right] \succeq \mathbf{0}$
Atomic Norm Problems ($\Phi=I$)
$\left.\begin{array}{rl}\max _{\boldsymbol{Q}, \mathcal{S}^{N}}\langle\boldsymbol{y}, \boldsymbol{z}\rangle & \text { s.t. }\end{array} \sum_{i=1}^{N-j} Q_{i, i+j}=\delta(j), \quad\left[\begin{array}{ll}\boldsymbol{Q} & \boldsymbol{z} \\ \boldsymbol{z}^{*} & 1\end{array}\right] \succeq \mathbf{0}\right]\left(\begin{array}{cl}T(\boldsymbol{\mu}) & \boldsymbol{x} \\ \min _{\boldsymbol{x}, \boldsymbol{\mu}, t} \frac{\mu_{1}+t}{2} & \text { s.t. } \quad\left[\begin{array}{l}\boldsymbol{x}^{*}\end{array}\right]\end{array}\right.$

Discrete-Time Bounded Lemma

$$
\begin{aligned}
& \text { For an FIR filter } \boldsymbol{h}=\left[\begin{array}{llll}
h_{N-1} & h_{N-2} & \cdots & h_{0}
\end{array}\right] \\
& |H(f)| \leq 1 \quad \Longleftrightarrow \quad \exists \boldsymbol{R}
\end{aligned} \text { s.t. } \quad \boldsymbol{R}^{*} \boldsymbol{R} \preceq \boldsymbol{I}, ~ l
$$

\star Main Result \star
For an FIR filter $\boldsymbol{h}=\left[\begin{array}{llll}h_{N-1} & h_{N-2} & \cdots & h_{0}\end{array}\right]$ with $h_{N-1} \neq 0$

$$
\begin{array}{ll}
\exists \boldsymbol{R} & \text { s.t. } \boldsymbol{R}^{*} \boldsymbol{R} \preceq \boldsymbol{I} \\
& \mathbb{V}
\end{array}
$$

$$
\exists \boldsymbol{Q} \in \mathcal{S}^{N} \quad \text { s.t. } \quad \sum_{i=1}^{N-j} Q_{i, i+j}=\delta(j), \quad\left[\begin{array}{cc}
\boldsymbol{Q} & \boldsymbol{h}^{*} \\
\boldsymbol{h} & 1
\end{array}\right] \succeq \mathbf{0}
$$

\star SDP formulation follows readily from well-known system theory \star Proof depends only on linear algebra and it is self-contained \star Makes the connections more transparent

References

[1] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, "The convex geometry of linear inverse $[1]$ V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, "The convex geometry of linear inverse
probiems," Foundations or Computational Iathematics, vol. 12, n. 6 , pp. 805-849, 2012 . [2] B. A. Dumitrescu, "Positive Trigonometric Polynomials and Signal Processing Applications," Dordrecht,
The Netherlands, Springer, 2007.
[3] P. P. Vaidyanathan, "The discrete-time bounded-real lemma in digital filtering," IEEE Trans. Circuits Syst.,
vol. CAS-32, no. 9, pp. $918-924,1985$. vol. CAS-32, no. 9, pp. $918-924$, 1985 .
[4] O. Teke, P.P. Vaidyanathan, "On the Role of the Bounded Lemma in the SDP Formulation of Atomic Norm

[5] E. J. Candes, C. Fernandez-Granda, "Towards a mathematical theory of super-resolution," Commun.
Pure Appl. Math., vol. 67, no. 6, pp. 906-956, 2014
[6] G. Tang, B. N. Bhaskar. P. Shah, and B. Recht, "Compressed sensing off the grid," IEEE Trans. Inf.
Theory, vol. 59, no. 11, pp. $7465-7490$, Nov. 2013.

