_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Overview

As Python has become the go-to language for machine learning, having
a package to streamline the prototyping of microphone array algorithms
and for accurate room impulse response (RIR) generation is important.
We present pyroomacoustics. Three key features include:

Object-oriented interface

e Conveniently construct different simulation scenarios in 2D /3D.

Room impulse response generator

e C implementation of the image source model to generate RIRs and
simulate propagation between sources and microphones.

Reference algorithms

e Beamforming, direction-of-arrival (DOA), adaptive filtering, Short-Time
Fourier Transform (STFT).

And it’s free!

pip install pyroomacoustics

Constructing a scene

With pyroomacoustics, we can build a 2D or 3D room in a very intuitive fashion and
conveniently add a source and microphone array.

Import numpy as np

import matplotlib. pyplot as plt
from scipy.io import wavfile
import pyroomacoustics as pra

specify signal source
fs, signal = wavfile.read(<FILEPATH>)

Create a 2D L—shaped room from the specified coordinates
corners = np.array ([[0,0], [0,3], [5.3], [5.1], [3.1], [3.,0]]).T # [x,y]

room = pra.Room.from corners(corners, fs=fs, max order=12, absorption=0.15)

Create the 3D room by extruding the 2D shape
room . extrude (2.)

add source and set the signal to WAV file content
room.add source([1., 1., 0.5], signal=signal)

add two—microphone array
R = np.array ([[3.5, 3.6], [2., 2.], [0.5, 0.5]]) # [[x]., [y]., [z]]
room.add microphone _array(pra.MicrophoneArray (R, room.fs))

Moreover, we can plot the constructed room using standard plotting libraries:

room. plot ()
plotting customization on current figure: ax = plt.gca()
plt.show ()

2.00 2.00

1.75 1.75

1.50 1.50

1.25 —
£
1.00 3
0.75
0.50
0.25
0.00

1.25 —
£
1.00 3
0.75
0.50
0.25
0.00

3
XImj 4

3
XImj 4

5 0.0

(a) Room generated by code above. (b) Shoebox - room = pra.ShoeBox([x, vy, z]) .

T Tokyo Metropolitan University, Japan

Robin Scheibler’, Eric Bezzam*, and Ivan Dokmanié
¥ Ecole Polytechnique Fédérale de Lausanne, Switzerland

Room impulse response (RIR) generator

The RIR generator is based on the image source model (ISM).

For a microphone placed at r and a source at sg, we can define the set of image sources visible to r as V,(sg). The impulse response between r and

so, sampled at Fy, is thus given by:

47||r — s|| c otherwise.

1 — o)&n® — 1 (1 COS (M)) sinc(t) if — v <t < T—U’,
a’I'(SO7 n) — Z (a) 6LP (n - Fs”r S”) ’ where 6LP(t) — {2 T Ty () ! 2 — — 2
s€Vr(so) 0

Notation: gen(s) denotes the reflection order of source s, & € [0, 1] is the absorption factor of the walls, ¢ is the speed of sound, and d;p is the

windowed sinc function where T, sets the window's width.

The sampling frequency, maximum ISM order and absorption factor can be set when
constructing the room.

room = pra.Room.from corners(corners, fs=fs, max order=12, absorption=0.15)

The RIRs can be computed and plotted with the following commands:

room.compute rir(); room.plot _rir ()

RIR: micO source0

z[m]

0.075 0.100 0.12
RIR: micl source0

5
0100 0.125 0150 0.175 0.200 X[mj 10 -4
Ti 15
ime [s] 20

(b) Vizualize the first K image sources after performing
room.compute rir() or room.image source_ model() by run-

(a) Generated room impulse responses
for the room specified in “Construct-

ing a scene”. ning room.plot(img order=K).

To simulate the recording of the source with the specified microphone array:

room.simulate () # resulting recordings in ‘room.mic_array.signals’

Most available software can only compute the RIR for shoebox rooms. With pyrooma-
coustics, it is possible to compute the RIR for arbitrary polyhedral rooms!

Beamforming (time and frequency)

Classic beamforming algorithms (DAS and MVDR) are included as special cases of the
acoustic rake receivers.

Create array

center = [2, 1.5]; radius = 37.5e—3

fft len = 512

array = pra.circular 2D array(center=center, M=6, phi0=0, radius=radius)
array = np.concatenate((array, np.array(center, ndmin=2).T), axis=1)
room.add _microphone_array(pra.Beamformer(array, room.fs, N=fft_len))

Compute and plot weights for the beamformer

mic_noise = 30 # db SPL

R.n = 10x%((mic_noise —94)/20) * np.eye(fft_lenxroom.mic_array.M)

room.mic_array.rake mvdr filters(room.sources[0][:1], interferer=room.sources|[1l][:1], R.n=R_n)

room. plot(freq=[500, 1000, 2000, 4000], img order=0)

Shoebox room (4x6) with
one source (circle) and
one interferer (square) 5 -
and a 6 mic circular (37.5
mm radius) array with a
center mic.

6 - —— 500
—— 1000
~— 2000

4000

[]
y [m]
N

The following command

can be used to beamform 1- 500
the simulated microphone Ll 2000
signals: ° 0%

| 2 -1 0 1 2 3 4 I 0 2 4 6
room.mic_array.process(FD=False) x [m] x [m]

(a) Rake MVDR with interferer. (b) rake delay and sum weights (source)

Pyroomacoustics: A Python package for audio room simulations and array processing algorithms

*University of lllinois Urbana-Champaign, USA

Direction-of-arrival (DOA)

DOA syntax where <aico- can be one of [SRP, MUSIC, CSSM, WAVES, FRIDA].

doa = pra.doa.<ALGO>(mic _array, fs, nfft, c, num.src, dim=<2,3>, mode=<'far',6 "near'>)
doa.locate sources(STFT, freq range)

doa. polar _plt_dirac|()

Spatial spectum stored in doa.grid.values and estimated direc- a0°

t101NS 1N doa.azimuth_recon (&Hd doa.colatitude_recon fOl“ ?)D)

(Right) far-field DOA with the same array geometry as in SRR
“B o amformin gn. Sl on al consists Of two 1—S€COHd 10Hg Whlte 180° A S 'II:'ROIFI’:)SA
original

noise sources at 61° and at 270° with an SNR of 0 dB. DOA
is performed within the frequency range of [300, 3500] Hz, i.e.
range of human speech.

Adaptive filtering

Adaptive filt. syntax where <aico- can be one of [NLMS, BlockLMS, RLS, BlockRLS].

create a known driving signal (reference) and convolve with unknown filter ‘w’

x = numpy.random.randn(n_samples)
d clean = scipy.signal.fftconvolve(x, w)[:n_samples|]
d = d_clean + numpy.random.randn(n_samples) * 10%xx(—SNR / 20.)

apply
adap_filt = pra.adaptive.<ALGO>(length)
for i in range(n_samples):

adap filt.update(x[i], d[i])

10°4 1 —— nlms
—— blocklms

Estimated filter w is stored in adap filt .w. s

—— blockrls

1014 i ’“,‘ ." ,““\'.“'“ A T f >‘ ! (ﬁ"\ ! “"‘h‘ ’(‘5‘ A “J')“',M J "“I.”" !

[|W — w]|>

(Right) Convergence of different adaptive filtering methods for
an SNR of 15 dB.

10—2_

0.00 0.05 0.10 0.15 0.20 0.25
Time [seconds]

STFT engine and real-time processing

While there is an STFT module supporting overlap-add, zero-padding, and various
analysis/synthesis windows:

* pra.stft . stft (x, L, hop, transform=np.fft. fft , win=None, zp back=0, zp front=0)

* pra.stft . istft (X, L, hop, transform=np.fft. ifft , win=None, zp_back=0, zp front=0)

It performs the analysis and synthesis operations on the entire signal. The pra. realtime .STFT
class is more suitable for streaming / real-time data and is applicable to multi-channel.

stft = pra.realtime .STFT(block _size , hop, analysis window , channels, transform=<numpy, pyfftw , mkl>)

while(<full blocks available >):
stft.analysis(input_audio)
stft.process() # option to apply filter in frequency domain
processed audio = stft.synthesis()

Related publications

J. B. Allen and D. A. Berkley, Image method for efficiently simulating small-room acoustics, 1979.
|. Dokmani¢, R. Scheibler, M. Vetterli, Raking the Cocktail Party, 2015.

R. Scheibler, M. Vetterli, The Recursive Hessian Sketch for Adaptive Filtering, 2016.

H. Pan et al., FRIDA: FRI-based DOA Estimation with Arbitrary Array Layout, 2017.

Check the paper for references to all algorithms implemented in pyroomacoustics!

May the Fork be with you!

New features on the horizon! If you would like to make a contribution, feel free to
make a pull request by navigating to the link below ©®

https://github.com/LCAV/pyroomacoustics

ICASSP'18

