
Is CL better than multi-style training (MST)? 

•Acoustic robustness in text-dependent tasks. 

  ↑ CL better than MST on all acoustic conditions 

•Generalisability towards  
less-constrained text scenarios. 

  ↑ CL better than MST on less-constrained text scenario 

  ↓ MST1 takes longer to converge

•Personalise the always-on Hey Siri detector  
by verifying the speaker’s voice before 
triggering Siri. 

•Leverage upon LSTMs and Curriculum Learning 
to reduce detection errors and improve 
generalisability across various conditions.  

•Exploit payload data to enable extraction of 
speaker vectors from less-constrained text. 

•Achieve a relative equal error rate (EER) 
reduction of 30–70% compared to the DNN 
baseline.
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Incorporating payload speech 
‘Hey Siri’ requests come in two forms:  

A. Just the ‘Hey Siri’ trigger; or  
B. The trigger followed by the payload. 

  
  
 Given the extra speech, we expect (B) might lead 
to a more reliable speaker representation.
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Conclusions

Personalised Hey Siri (PHS) system 

•The DNN extracts speaker-specific information 
based on the trigger phrase.  

•The DNN system is only able to perform text-
dependent speaker verification. 

➡ Limited flexibility. 

➡ LSTM to handle less-constrained text. 

➡ Curriculum Learning to improve generalisability.

Xall = {Xhs [Xhs+pl [Xpl} Xsim
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Hey Siri What is thirty six degrees in Fahrenheit

Xpl
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•The proposed curriculum learning procedure improves: 

➡ The robustness against various acoustic conditions. 

➡ The generalisability towards less constrained-text 
scenarios. 

•A single generalised discriminative transform that 
performs speaker verification on both text-dependent 
and text-independent tasks. 

•Using payload speech further reduces the EER. 
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Improving generalisation via curriculum learning (CL) 
The general principle of learning simpler concepts first before gradually learning more complex ones.

1. Learn fixed phrase 2. Learn less-constrained text content 3. Learn acoustic conditions 

Text-dependent     text-independent Acoustic robustness

‣ DNN → LSTM: 
↑ Accuracy  
↑ Flexibility

‣ Fixed text → less-constrained text: 
↑ Generalisability towards text scenarios  
↑ Using payload further reduces EER

‣ Clean → augmented: 
↑  Robustness under various 
     acoustic conditions 

#utts #spks #utt/spk
Train (    ) 2.5M 18k >20
Train (         ) 1.5M 18k >20

iPhone
enrol 2.5k 500 >4
test 53k 500 >40

Far-field
enrol 490 98 >4
test 11k 102 >20

iPhone-sim
enrol 490 98 >4
test 11k 102 >20

X·
Xsim

·

Datasets 
•iPhone data: ‘Hey Siri’ requests sent to our servers.  
•Far-field data: ‘Hey Siri’ requests from various distances 

(6-15ft) recorded in various rooms of ten different houses. 
•Simulated iPhone (iPhone-sim): a subset of iPhone data 

convolved with various RIRs and/or corrupted with  
car noise.  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DNN: 442 supervector → 4x256 sigmoidal → 1x128 linear (→ 1x18k softmax) 
LSTM: 20 MFCCs → 1x512 LSTM → 1x128 linear (→ 1x18k softmax)

VAN: Vanilla model only trained on Xhs
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Enrolment Examples 
“Hey Siri, it’s me” 

“Hey Siri, how’s the weather today”
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CL1, CL2: Curriculum Learning models

Premises
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