
Joint Separation and Dereverberation of 
Reverberant Mixtures with Determined 

Multichannel Non-negative Matrix Factorization

ICASSP 2018
AASP-L2: Multi-microphone Speech Enhancement and Source Separation
Tuesday, April 17, 16:00 - 16:20

Hideaki Kagami Keio University, Japan
Hirokazu Kameoka NTT Corporation, Japan
Masahiro Yukawa Keio University, Japan



1/18

Problem setting
Aim: Blind source separation (BSS) under highly 
reverberant environments
Assumptions: 
# of sources = # of mics
Sources do not move
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Frequency-wise instantaneous mixture

Anechoic mixture can be approximated as frequency-wise 
instantaneous mixture

BSS problem involves frequency-wise source separation 
and permutation alignment across frequencies
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Frequency-wise instantaneous mixture

Anechoic mixture can be approximated as frequency-wise 
instantaneous mixture

BSS problem involves frequency-wise source separation 
and permutation alignment across frequencies
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Independent Vector Analysis (IVA)

Simultaneously solves frequency-wise source separation 
and permutation alignment

Finds separation matrices such that
◦ the independence of separated signals is maximized, and
◦ the power of each separated signal varies coherently across 

frequencies
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[Kim+2006, Hiroe2006]
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Multichannel non-negative matrix factorization (MNMF)

Multichannel extension of non-negative matrix factorization
The power spectrogram of each source is modeled as a 

product of two non-negative matrices
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[Ozerov+2010, Sawada+2012]

Applicable for underdetermined
mixing scenarios
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Independent Low-Rank Matrix Analysis (ILRMA)

 Idea combining IVA and MNMF
MNMF framework specialized for determined systems
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frequency
𝑓𝑓

time
𝑛𝑛

source
𝑗𝑗

channel
𝑖𝑖

source
𝑖𝑖

time
𝑛𝑛

Can be optimized with fast 
algorithms (30x faster than MNMF)

[Kameoka+2010, Kitamura+2016]
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Motivation of this work
All BSS systems using frequency-wise instantaneous mixture 

model are weak against long reverberation

To make ILRMA robust against long reverberation, we employ  
frequency-wise deconvolution system [Nakatani+2008, 
Yoshioka+2011, Kameoka+2010, ...] as the mixing model

Instantaneous:

Deconvolution:

Dereverberation process
Separation process
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Derivation of likelihood function

Local Gaussian source model
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Derivation of likelihood function

Local Gaussian source model

Low-rank matrix
NMF model
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Derivation of likelihood function

Local Gaussian source model

Mixing model

NMF model
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Derivation of likelihood function

Local Gaussian source model

Mixing model

Log-likelihood

NMF model
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Optimization algorithm

Log-likelihood

Optimization process
(S1)
(S2)
(S3) : NMF parameters

: Separation matrix

: Dereverberation filter

where
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(S1) Dereverberation filter update

When                                is fixed, 𝐿𝐿(𝜽𝜽) becomes equal to 
the objective function of a multivariate linear prediction 
problem when seen as a function of 

Thus, the optimal       that minimizes 𝐿𝐿(𝜽𝜽) can be found 
by solving a Yule-Walker equation
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(S2, S3) Updates of remaining parameters

When        is fixed (and so the dereverberated signals 
𝐲𝐲(𝑓𝑓,𝑛𝑛) can be treated as observed signals), 𝐿𝐿(𝜽𝜽) becomes 
equal to the log-likelihood of ILRMA 

Thus, we can use the same optimization scheme as ILRMA:
(S2) Separation matrix update 

with Iterative Projection (IP) [Ono2011]

• 𝐿𝐿(𝜽𝜽) can be maximized analytically with respect to one of the 
column vectors of

• We can iteratively maximize 𝐿𝐿(𝜽𝜽) with respect to each column
(S3) NMF parameter update with 

majorization-minimization [Kameoka+2006, Nakano+2010,Févotte2011]

• 𝐿𝐿(𝜽𝜽) is equal to the objective function of Itakura-Saito divergence 
NMF up to constant terms when seen as a function of the NMF 
parameters
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Experimental settings

Synthesized 10 mixtures for each gender pair of speech utterances 
excerpted from ATR speech database
Used two-input four-output impulse response, 

which was measured in a varechoic chamber
The reverberation time was 0.6 sec.
Comparison : 

• Proposed (IP/FICA)
• ILRMA, Sequential (Dereverberation +ILRMA)
STFT : 32ms Hanning window, 8ms overlap
Filter length 𝑁𝑁′ for dereverberation

Evaluation measures : 
• DRR (Direct-to-reverberation ratio) 
• SIR (Signal-to-Interference ratio)

Frequency 0～0.8kHz 0.8～1.5kHz 1.5～3.0kHz 3.0kHz～

Filter length 𝑁𝑁′ 25 20 15 10

150cm30°
-40°
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Simulation results (1/2)
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Simulation results (2/2)
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Computational time comparison

Proposed (IP) Proposed (FICA) ILRMA

Comp. time 
(normalized) 2.56 2.80 1.0

Average computation times normalized to 1 
with the reference method (ILRMA)
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Conclusion

BSS under highly reverberant environments
ILRMA + Frequency-wise deconvolution system

The optimization process consists of iteratively 
optimizing dereverberation filters, separation matrix 
and NMF parameters
The proposed method yielded higher separation 

performance and dereverberation performance
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