ICASSP 2018

AASP-L2: Multi-microphone Speech Enhancement and Source Separation Tuesday, April 17, 16:00 - 16:20

Joint Separation and Dereverberation of Reverberant Mixtures with Determined Multichannel Non-negative Matrix Factorization

Hideaki Kagami Hirokazu Kameoka Masahiro Yukawa Keio University, Japan NTT Corporation, Japan Keio University, Japan

Problem setting

Aim: Blind source separation (BSS) under highly reverberant environments

Assumptions:

•# of sources = # of mics

Sources do not move

Frequency-wise instantaneous mixture

Anechoic mixture can be approximated as frequency-wise instantaneous mixture

 BSS problem involves frequency-wise source separation and permutation alignment across frequencies

Frequency-wise instantaneous mixture

Anechoic mixture can be approximated as frequency-wise instantaneous mixture

 BSS problem involves frequency-wise source separation and permutation alignment across frequencies

Independent Vector Analysis (IVA) [Kim+2006, Hiroe2006]

 Simultaneously solves frequency-wise source separation and permutation alignment

Finds separation matrices such that

- the independence of separated signals is maximized, and
- the power of each separated signal varies coherently across frequencies

Multichannel non-negative matrix factorization (MNMF)

[Ozerov+2010, Sawada+2012]

Multichannel extension of non-negative matrix factorization
 The power spectrogram of each source is modeled as a product of two non-negative matrices

Independent Low-Rank Matrix Analysis (ILRMA)

[Kameoka+2010, Kitamura+2016]

Idea combining IVA and MNMF

MNMF framework specialized for determined systems

Motivation of this work

- All BSS systems using frequency-wise instantaneous mixture model are weak against long reverberation
- To make ILRMA robust against long reverberation, we employ frequency-wise deconvolution system [Nakatani+2008, Yoshioka+2011, Kameoka+2010, ...] as the mixing model

Instantaneous:
$$\mathbf{W}^{\mathsf{H}}(f)\mathbf{x}(f,n) = \mathbf{s}(f,n)$$

Local Gaussian source model

```
s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0, v_j(f,n)) \qquad (j=1,\ldots,J)
```


Local Gaussian source model

$$s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0, \underline{v_j(f,n)}) \qquad (j=1,\ldots,J)$$

$$\underline{v_j(f,n)} = \sum_k h_k(f)u_k(n) \longrightarrow \mathsf{NMF} \mathsf{model}$$

Low-rank matrix

Local Gaussian source model

$$s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0, \underline{v_j(f,n)}) \qquad (j = 1, \dots, J)$$
$$\underline{v_j(f,n)} = \sum_k h_k(f)u_k(n) \longrightarrow \mathsf{NMF} \mathsf{model}$$

• Mixing model $\mathbf{y}(f,n) = \mathbf{x}(f,n) - \sum_{n'=1}^{N'} \mathbf{G}^{\mathsf{H}}(f,n')\mathbf{x}(f,n-n')$ $\mathbf{s}(f,n) = \mathbf{W}^{\mathsf{H}}(f,0)\mathbf{y}(f,n)$

Local Gaussian source model

$$s_j(f,n) \sim \mathcal{N}_{\mathbb{C}}(s_j(f,n)|0, \underline{v_j(f,n)}) \qquad (j = 1, \dots, J)$$
$$\underline{v_j(f,n)} = \sum_k h_k(f)u_k(n) \longrightarrow \mathsf{NMF} \mathsf{model}$$

Mixing model $\mathbf{y}(f,n) = \mathbf{x}(f,n) - \sum_{n'=1}^{\infty} \mathbf{G}^{\mathsf{H}}(f,n')\mathbf{x}(f,n-n')$ $\mathbf{s}(f,n) = \mathbf{W}^{\mathsf{H}}(f,0)\mathbf{y}(f,n)$ Log-likelihood $L(\boldsymbol{\theta}) = 2N \sum_{f} \log |\det \mathbf{W}^{\mathsf{H}}(f, 0)| - \sum_{f, n, j} \left(\log v_j(f, n) + \frac{|s_j(f, n)|^2}{v_j(f, n)} \right)$

Optimization algorithm

Log-likelihood

$$\begin{split} L(\boldsymbol{\theta}) &= \\ 2N \sum_{f} \log \left| \det \mathbf{W}^{\mathsf{H}}(f, 0) \right| - \sum_{f, n, j} \left(\log v_{j}(f, n) + \frac{|s_{j}(f, n)|^{2}}{v_{j}(f, n)} \right) \\ \text{where} \left\{ \begin{array}{l} \mathbf{y}(f, n) &= \mathbf{x}(f, n) - \sum_{n'} \mathbf{G}^{\mathsf{H}}(f, n') \mathbf{x}(f, n - n') \\ \mathbf{s}(f, n) &= \mathbf{W}^{\mathsf{H}}(f, 0) \mathbf{y}(f, n) \end{array} \right. \end{split}$$

• Optimization process (S1) $\theta_G \leftarrow \operatorname{argmax} L(\theta)$: Dereverberation filter (S2) $\theta_W \leftarrow \operatorname{argmax} L(\theta)$: Separation matrix θ_W (S3) $\theta_V \leftarrow \operatorname{argmax} L(\theta)$: NMF parameters θ_V

(S1) Dereverberation filter update

• When $\theta_W = { \mathbf{W}^{\mathsf{H}}(f, 0) }_f$ is fixed, $L(\boldsymbol{\theta})$ becomes equal to the objective function of a multivariate linear prediction problem when seen as a function of $\theta_G = { \mathbf{G}^{\mathsf{H}}(f, 1), \dots, \mathbf{G}^{\mathsf{H}}(f, N') }_f$

• Thus, the optimal θ_G that minimizes $L(\theta)$ can be found by solving a Yule-Walker equation

(S2, S3) Updates of remaining parameters

- When θ_G is fixed (and so the dereverberated signals $\mathbf{y}(f, n)$ can be treated as observed signals), $L(\theta)$ becomes equal to the log-likelihood of ILRMA
- Thus, we can use the same optimization scheme as ILRMA:
 (S2) Separation matrix update

with Iterative Projection (IP) [Ono2011]

- $L(\theta)$ can be maximized analytically with respect to one of the column vectors of $\mathbf{W}^{\mathsf{H}}(f, 0)$
- We can iteratively maximize $L(\theta)$ with respect to each column
- (S3) NMF parameter update with majorization-minimization [Kameoka+2006, Nakano+2010, Févotte2011]
 - L(θ) is equal to the objective function of Itakura-Saito divergence NMF up to constant terms when seen as a function of the NMF parameters
 14/18

Experimental settings

- Synthesized 10 mixtures for each gender pair of speech utterances excerpted from ATR speech database
- Used two-input four-output impulse response, which was measured in a varechoic chamber
- The reverberation time was 0.6 sec.
- Comparison :
 - Proposed (IP/FICA)
 - ILRMA, Sequential (Dereverberation +ILRMA)
- STFT : 32ms Hanning window, 8ms overlap
- Filter length N' for dereverberation

Frequency	0~0.8kHz	0.8~1.5kHz	1.5 ~ 3.0kHz	3.0kHz~
Filter length N'	25	20	15	10

Evaluation measures :

- DRR (Direct-to-reverberation ratio)
- SIR (Signal-to-Interference ratio)

Simulation results (1/2)

[Direct-to-reverberation ratio]

Simulation results (2/2)

[Signal-to-Interference ratio]

Computational time comparison

Average computation times normalized to 1 with the reference method (ILRMA)

	Proposed (IP)	Proposed (FICA)	ILRMA
Comp. time (normalized)	2.56	2.80	1.0

BSS under highly reverberant environments

ILRMA + Frequency-wise deconvolution system

$$\sum_{n'=0}^{N'} \mathbf{W}^{\mathsf{H}}(f, n') \mathbf{x}(f, n - n') = \mathbf{s}(f, n)$$

 The optimization process consists of iteratively optimizing dereverberation filters, separation matrix and NMF parameters

The proposed method yielded higher separation performance and dereverberation performance