

An investigation of subband WaveNet vocoder covering entire audible frequency range with limited acoustic features

*Takuma Okamoto*¹, Kentaro *Tachibana*¹, Tomoki *Toda*^{2,1}, Yoshinori *Shiga*¹, and Hisashi *Kawai*¹

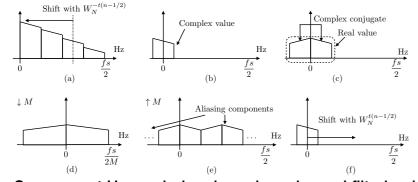
¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

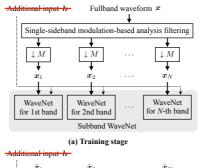
1. Introduction

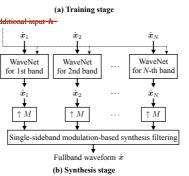
- Target: High-quality statistical parametric speech synthesis
 - Conventional: DNN-based acoustic model with source-filter model-based vocoder
 - State-of-the-art: Raw waveform generation-based speech synthesis
 - * Parallel WaveNet and WaveRNN: Linguistic features to raw waveforms (24k)
 - ** End-to-end text-to-speech synthesis with neural vocoders Char2wav (16k), Deep voice 3 (48k), Tacotron 2 (24k)
- Purpose: Raw waveform generation-based high-quality speech synthesis covering entire human audible frequency range with subband WaveNet architecture

24k

16k

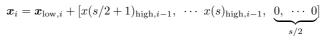

- Source-filter model-based vocoders with a sampling frequency (fs) of 48 kHz
 - * Marlin toolkit and GlottDNN
- Only Deep voice 3 introduces fs = 48 kHz
 - ***** Unknown network structure
 - # Huge GPU memory required for training

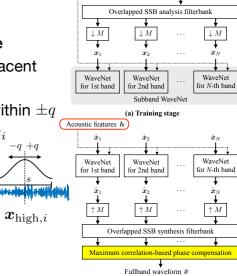

- * Smaller network size trainable by consumer GPUs with small memory
- * Only investigated "unconditional" training and synthesis with $fs=32~\mathrm{kHz}$
- Investigating bandwidth extension effect with bandlimited acoustic features


2. Subband WaveNet

- Multirate signal processing
 - Dividing fullband signal into N subband signals and decimating them with a factor M
 - * Signal length and sampling frequency: 1/M

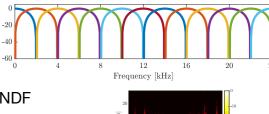
- Square-root Hann window-based overlapped filterbank
 Easier training with colored subband signals
 - * Realizing higher quality synthesis than fullband WaveNet in "unconditional" training and synthesis

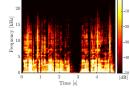


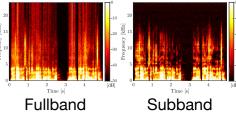

T. Okamoto et al. ASRU 2017

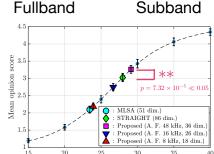
3. Subband WaveNet vocoder

- Subband WaveNet conditioned on acoustic features
- Introducing maximam correlation-based phase compensation between subbands in synthesis stage
 - Using common frequency component between adjacent subbands
 - 1. Finding a time shift for higher subband $m{x}_{{\rm high},i}$ within $\pm q$ that maximize correlation between $m{x}_{{\rm high},i}$ and $m{x}_i$




- 2. $oldsymbol{x}_{\mathrm{high},i}$: Overlap-and-added
- 3. Sequentially compensated from low subbands


4. Experiments


- Japanese male speech corpus with a sampling frequency of 48 kHz
- 3.7 hours for training set, 23 utterances for test set
- Subband WaveNet vocoder setting
 - Filterbank (M = 6 and N = 13) fs = 8 kHz
 - * Prototype FIR filter (1535 samples)
 - Acoustic features: analyzed every 5 ms
 - * Fundamental frequency (f_o): analyzed by NDF
 - STFT-based simple mel-cepstrums: 35 dims (48 kHz), 25 dims (16 kHz), 17 dims (8 kHz)
 - Time resolution adjustment between h and x
 - * Simple copy (No transposed convolution)
 - WaveNet model (Parameter update: 100,000 times)
 - ***** Receptive field: 0.192 s (9 x 3 = 27 layers)
- Baseline (Source-filter model-based vocoders)
- MLSA (f_o + STRAIGHT mel-cepstrums 50 dims)
- STRAIGHT (f_o + STRAIGHT mel-cepstrums 60 dims + aperiodicity 25 dims)
- MOS test with 15 listening subjects
 - **MNRU:** $y(t) = x(t) + 10^{-Q/20}x(t)n(t)$
- 11 types x 23 sentences = 253 evaluation utterances
- Results
 - Proposal with fullband features outperformed others
- Higher frequency components of h are required

Original

