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Sound Transmission in Echoic Environments

Spatio-temporal room impulse response (RIR):

h(r, t)
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Methods for Sound-Field Measurements

Conventional approach

Obey the spatial sampling theorem

∆ ≤ ∆max ∝ 1

fmax
.

Compressed sensing for static setups

Use random microphone positions
(Mignot et al. 2013, 2014).
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Proposed Dynamic Approach

t
microphone trajectory

(tracked during recording)

excitation signal

Compressed-sensing (CS) formulation:

min
h

‖x−Ah‖2 subject to ‖c(h)‖0 ≤ K.

x: Measured signal

h: Sought impulse responses on a Cartesian grid

A: Matrix containing excitation signal and interpolation coefficients

c(h): Sparse representation of h
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Inverse Problem with Dynamic Measurements

M

L

N

U

: Number of samples x(r(n), n)
: Length of RIRs
: Number of grid RIRs
: Number of unknowns (NL)

x(r(n), n) = s(n) ∗ h(r(n), n)

=
L−1
∑

m=0

h(r(n),m) s(n−m)

≈
L−1
∑

m=0

N
∑

u=1

h(gu,m)ϕn(gu) s(n−m)

Interpolation between virtual grid points gu
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Structure of Measurement Model

x(r(n), n) =

L−1
∑

m=0

N
∑

u=1

ϕn(gu)s(n−m) h(gu, n)

x = A h x ∈ R
M ,A ∈ R

M×U ,h ∈ R
U

Structure of sampling matrix:

A =
[

Φ1S, Φ2S, . . . , ΦNS
]

Convolution matrix S ∈ RM×L

Diagonal matrix Φu ∈ RM×M with weightings for u-th grid position

m-th row of A is composed of the spatially weighted source signal

sm(g, n) = ϕm−1(g) s(m− 1− n)
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Sparse Sound-Field Representation

Under far-field assumptions, the

sound-field spectrum ideally

lives on the hypercone
(Ajdler et al. 2006)

κ2
x + κ2

y + κ2
z =

ω2

c20
. ω

κx,y,z

: Angular frequency in time
: Angular frequencies in space

⇒ Describe grid RIRs by 4D frequency representation c = Ψh, where

Ψ = TZ ⊗ T Y ⊗ TX ⊗ TL

is a unitary U × U matrix and c ∈ CU is a K-sparse vector.

⇒ CS matrix: A = AΨ
H
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Coherence of Measurements

For practical applications, the coherence of A may be used to
evaluate the CS problem:

µ(A) = max
1≤u6=v≤U

|〈ac
u,a

c
v〉|

‖ac
u‖2

‖ac
v‖2

,

where ac
u denotes the u-th column of A.

Theoretical error bounds for CS recovery improve with smaller

coherence (Donoho et al. 2001, 2003).
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Structure of the CS Matrix: Rows

For simplicity, let us consider the 2D case with Ψ = TX ⊗ T L.

⇒ m-th row of A: sm(gx, n) = ϕm−1(gx) s(m− 1− n) .

⇒ For Ψ performing the 2D DFT on h(gx, n), the m-th row of A is

Sm(kx, l) =
1√
XL

X−1
∑

gx=0

L−1
∑

n=0

sm(gx, n) e−2πj l
L
ne−2πj kx

X
gx ,

where kx ∈ {−X−1
2 , . . . , X−1

2 } and l ∈ {−L−1
2 , . . . , L−1

2 } are the

sampled frequency variables for the space and time dimension.
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Structure of the CS Matrix: Columns

Each column of A comprises a specific frequency pair (k′x, l
′) of the

sampled spectra:

ac
(k′

x,l
′) = [S1(k

′
x, l

′),S2(k
′
x, l

′), . . . ,SM (k′x, l
′)]

T
.

Let us define the trajectory relative to the modeled grid in space:

Dx(n) =
rx(n)− r0

∆x

.

For spectrally flat excitation and interpolation, the movement of the

microphone from point rx(n) to rx(n+m) ideally corresponds to

recursive phase shifts in the discrete Fourier spectrum,

Sn+m(k′x, l
′) = e−2πj(Dx(m)−Dx(n))

k′

x
X e−2πjm l′

L Sn(k
′
x, l

′).
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Fast Coherence Analysis 2D

The coherence of A is

µ(A) = max
(k′

x,l
′) 6=(k′′

x ,l′′)

|〈ac
(k′

x,l
′),a

c
(k′′

x ,l′′)〉|
‖ac

(k′

x,l
′)‖2‖ac

(k′′

x ,l′′)‖2

= max
(∆kx,∆l) 6=(0,0)

1

M

∣

∣

∣

∣

∣

M−1
∑

n=0

e−2πj Dx(n)
X

∆kx e−2πj n
L
∆l

∣

∣

∣

∣

∣

,

where

∆kx = k′x − k′′x , ∆kx ∈ {−(X − 1), . . . , X − 1},
∆l = l′ − l′′, ∆l ∈ {−(L− 1), . . . , L− 1},

are the differences of the discrete frequency variables

k′x, k
′′
x ∈ {−X−1

2 , . . . , X−1
2 } and l′, l′′ ∈ {−L−1

2 , . . . , L−1
2 }.
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Fast Coherence Analysis 4D

Defining rD(n) = [Dx(n), Dy(n), Dz(n)]
T , d = [∆kx,∆ky,∆kz ]

T , and

X (rD(n),d) = e
−2πj

(

Dx(n)
X

∆kx+
Dy(n)

Y
∆ky+

Dz(n)
Z

∆kz

)

,

the coherence of the 4D sampling problem is

µ(A) = max
(d,∆l)

1

M

∣

∣

∣

∣

∣

M−1
∑

n=0

X (rD(n),d) e−2πj n
L
∆l

∣

∣

∣

∣

∣

with (d,∆l) 6= (0, 0).

→ Calculating coherence is reduced from a problem in O(U2) to O(U).

→ Coherence only depends on the grid related trajectory rD(n).

⇒ Efficient tool for finding optimal trajectories for sought grids,

alternatively, for modeling optimal grids for given measurements.
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Experiments

We simulated the sound field inside an office sized room by using the
image source method with fs = 8kHz.

Length of RIRs is L = 511, ROI is a 5× 5 grid with ∆ = 0.02m,
design of extended 7× 7 grid

SNR = 40 dB

Lagrange interpolator of order three and Fourier representations

Quality measure for sound-field recovery:

MNSM =
1

N

∑N

u=1

‖h true
u − ĥu‖22
‖h true

u ‖22
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Results
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Conclusions

CS framework for sound-field recovery using moving microphones.

Linear system by using source signal and microphone positions.

CS solution allows for robust recovery in the underdetermined case.

Straightforward analysis of CS matrix for Fourier representations.

Fast coherence analysis for spectrally flat excitation/interpolation.
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Thank you for your attention.
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