A Stochastic Douglas Rachford Algorithm with Application to Non Separable Regularizations

Adil Salim, Pascal Bianchi and Walid Hachem

Telecom ParisTech and Universite Paris-Est-Marne-Ia-Vallee

• F, R convex functions over $X = \mathbb{R}^d$ • Problem:

 $\min_{x \in \mathsf{X}} F(x) + R(x)$ • ξ and ζ are random variables

• Data fitting term $F(x) = \mathbb{E}_{\xi}(f(x,\xi))$ • **Regularization** term $R(x) = \mathbb{E}_{\zeta}(r(x,\zeta))$ **Stochastic Douglas Rachford** Algorithm

Takes advantage of the numerical stability without the iteration complexity.

> $y_{n+1} = \operatorname{prox}_{\gamma f(\cdot,\xi_{n+1})}(x_n^{\gamma})$ $z_{n+1} = \operatorname{prox}_{\gamma r(\cdot, \zeta_{n+1})} (2y_{n+1} - x_n^{\gamma})$ $x_{n+1}^{\gamma} = x_n^{\gamma} + z_{n+1} - y_{n+1}$

Return to the Overlapping Group Lasso

Two Douglas Rachford strategies to solve the problem defined by (1)-(3). First, Partially Stochastic Douglas Rachford

1 Sample $i_{n+1} \sim U(\{1, ..., N\})$ Occupate $\operatorname{prox}_{\gamma f_{i_{n+1}}}$ using [2]

Example: Overlapping Group Regularizations

Structured sparsity:

 $F(x) = \sum_{i=1}^{n} f_i(x)$

cost function associated with SVM or logistic regression

• *G* is a set of **possibly overlapping** subsets of $\{1,\ldots,d\}$

 $R(x) = \sum_{g \in \mathcal{G}} r_g(x)$

• $\forall g \in \mathcal{G}, x_{|q}$ is the restriction of vector x to g (e.g if g = 1, 2, 4 then $x = (x_1, x_2, x_4)$ • $r_q(x) = ||x_{|q}||_1$

where

(1)

(2)

(3)

- (ξ_n) (resp. (ζ_n)) are i.i.d copies of ξ (resp. ζ) • Constant step $\gamma > 0$
- The random functions $f(\cdot, \xi_{n+1})$ (resp. $r(\cdot, \xi_{n+1})$) can be much simpler than F (resp. R), see (2)-(3) ([2]).

Dynamical Behavior

Constant step $\gamma > 0$: No a.s convergence. Stochastic approximation technique [3]:

$$\mathbf{x}_{\gamma}(t) = x_n^{\gamma} + (t - n\gamma) \frac{x_{n+1}^{\gamma} - x_n^{\gamma}}{\gamma}, \qquad (6)$$

where n > 0, $n\gamma \le t < (n+1)\gamma$.

Compute $\operatorname{prox}_{\gamma R}$ using [5] Second, Stochastic Douglas Rachford

• Sample $i_{n+1} \sim U(\{1, ..., N\})$ • Sample $q_{n+1} \sim U(\mathcal{G})$ **3** Compute $\operatorname{prox}_{\gamma f_{i_{n+1}}}$ using [2] • Compute $\operatorname{prox}_{\gamma r_{q_{n+1}}}$ (easy, soft thresholding)

Figure 2: F + R as a function of time for the Stochastic Douglas Rachford and the Partially Stochastic Douglas Rachford algorithms

Douglas Rachford Algorithm

Proximal methods for solving (1) are known for numerical stability. Proximity operator $\operatorname{prox}_{\gamma R}(x) = \arg\min_{y \in \mathsf{X}} \frac{1}{2\gamma} \|x - y\|^2 + R(y), \quad \gamma > 0$ Standard method: Douglas-Rachford $y_{n+1} = \operatorname{prox}_{\gamma F}(x_n)$ $z_{n+1} = \operatorname{prox}_{\gamma R}(2y_{n+1} - x_n)$ (4) $x_{n+1} = x_n + z_{n+1} - y_{n+1}$ Theorem ([1]): $y_n \longrightarrow_{n \to +\infty} \arg \min F + R$ • Related to ADMM • Converges with a constant step $\gamma > 0$

Splitting method

Figure 1: The linearly interpolated process of order γ : \mathbf{x}_{γ}

Theorem

Under mild assumptions,

 $\mathbf{x}_{\gamma} \longrightarrow_{\gamma \to 0} \mathbf{x},$ weakly where x satisfies the Differential Inclusion ([4])

 $\dot{\mathbf{x}}(t) \in \nabla F(\mathbf{x}(t)) + \partial R(\mathbf{x}(t)), \quad t \ge 0.$

Long-run behavior

(5)

Figure 3: Histogram of the initialization and the last iterates of the two algorithms

References

[1] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

[2] G. Chierchia, A. Cherni, E. Chouzenoux, and J.-C. Pesquet. Approche de douglas-rachford aléatoire par blocs appliquée à la régression logistique parcimonieuse. In *GRETSI*, 2017.

More splitting?

Sometimes we need more splitting for both F and R.

• In adaptive signal processing/online learning, F is unknown but revealed through i.i.d realizations of ξ • Even if F is known, $\operatorname{prox}_{\gamma F}$ is often intractable

- (e.g(2))
- In many cases (e.g(3)), $\operatorname{prox}_{\gamma R}$ is also intractable

Contact Information

 adil.salim,pascal.bianchi@telecom-paristech.fr • walid.hachem@u-pem.fr

Known fact :

 $\mathbf{x}(t) \longrightarrow_{t \to +\infty} \arg \min F + R$

We would like \mathbf{x}_{γ} to "inherits" this property. OK under stability of the Markov chain (x_n^{γ}) .

Theorem

Assume moreover

- $F(x) + R(x) \longrightarrow_{\|x\| \to +\infty} +\infty$ • $\nabla f(\cdot, \xi)$ is Lipschitz continuous.
- Then, for every $\varepsilon > 0$,

 $\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} \mathbb{P}\left(d(x_k^{\gamma}, \arg\min(F+R)) > \varepsilon\right) \xrightarrow[\gamma \to 0]{} 0.$

[3] H. J. Kushner and G. G. Yin.

Stochastic approximation and recursive algorithms and applications, volume 35 of Applications of Mathematics (New York).

Springer-Verlag, New York, second edition, 2003. Stochastic Modelling and Applied Probability.

[4] H. Brézis.

Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.

North-Holland mathematics studies. Elsevier Science, Burlington, MA, 1973.

[5] L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. In Advances in NIPS, pages 352–360, 2011.