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Objectives

•F,R convex functions over X = Rd

•Problem:
min
x∈X

F (x) +R(x) (1)

• ξ and ζ are random variables
•Data fitting term F (x) = Eξ(f (x, ξ))
•Regularization term R(x) = Eζ(r(x, ζ))

Example: Overlapping Group
Regularizations

Structured sparsity:

•

F (x) =
N∑
i=1

fi(x) (2)

cost function associated with SVM or logistic
regression

•G is a set of possibly overlapping subsets of
{1, . . . , d}

•
R(x) =

∑
g∈G

rg(x) (3)

•∀g ∈ G, x|g is the restriction of vector x to g (e.g if
g = 1, 2, 4 then x = (x1, x2, x4))

• rg(x) = ‖x|g‖1

Douglas Rachford Algorithm

Proximal methods for solving (1) are known for nu-
merical stability. Proximity operator

proxγR(x) = arg min
y∈X

1
2γ
‖x− y‖2 +R(y), γ > 0

Standard method: Douglas-Rachford
yn+1 = proxγF (xn)
zn+1 = proxγR(2yn+1 − xn)
xn+1 = xn + zn+1 − yn+1 (4)

Theorem ([1]) : yn −→n→+∞ arg minF +R

•Related to ADMM
•Converges with a constant step γ > 0
•Splitting method

More splitting?

Sometimes we need more splitting for both F and R.

• In adaptive signal processing/online learning, F is
unknown but revealed through i.i.d realizations of ξ

•Even if F is known, proxγF is often intractable
(e.g (2))

• In many cases (e.g (3)), proxγR is also intractable
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Stochastic Douglas Rachford
Algorithm

Takes advantage of the numerical stability without
the iteration complexity.

yn+1 = proxγf (·,ξn+1)(x
γ
n)

zn+1 = proxγr(·,ζn+1)(2yn+1 − xγn)
xγn+1 = xγn + zn+1 − yn+1 (5)

where
• (ξn) (resp. (ζn)) are i.i.d copies of ξ (resp. ζ)
•Constant step γ > 0
The random functions f (·, ξn+1) (resp. r(·, ξn+1)) can
be much simpler than F (resp. R), see (2)-(3) ([2]).

Dynamical Behavior

Constant step γ > 0: No a.s convergence. Stochastic
approximation technique [3]:

xγ(t) = xγn + (t− nγ)
xγn+1 − xγn

γ
, (6)

where n > 0, nγ ≤ t < (n + 1)γ.
.

γ

xa,γ(t)

.

Figure 1: The linearly interpolated process of order γ: xγ

Theorem

Under mild assumptions,
xγ −→γ→0 x,

weakly where x satisfies the Differential Inclusion
([4])

ẋ(t) ∈ ∇F (x(t)) + ∂R(x(t)), t ≥ 0.

Long-run behavior

Known fact :
x(t) −→t→+∞ arg minF +R

We would like xγ to "inherits" this property. OK under
stability of the Markov chain (xγn).

Theorem

Assume moreover
•F (x) +R(x) −→‖x‖→+∞ +∞
•∇f (·, ξ) is Lipschitz continuous.
Then, for every ε > 0,

lim sup
n→∞

1
n

n∑
k=1

P (d(xγk, arg min(F +R)) > ε) −−→
γ→0

0 .

Return to the Overlapping Group
Lasso

Two Douglas Rachford strategies to solve the problem
defined by (1)–(3).
First, Partially Stochastic Douglas Rachford
1 Sample in+1 ∼ U({1, . . . , N})
2 Compute proxγfin+1

using [2]
3 Compute proxγR using [5]
Second, Stochastic Douglas Rachford
1 Sample in+1 ∼ U({1, . . . , N})
2 Sample gn+1 ∼ U(G)
3 Compute proxγfin+1

using [2]
4 Compute proxγrgn+1

(easy, soft thresholding)

Figure 2: F + R as a function of time for the Stochastic Dou-
glas Rachford and the Partially Stochastic Douglas Rachford al-
gorithms

Figure 3: Histogram of the initialization and the last iterates of
the two algorithms
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