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Motivation: Covariance matrix sketching

Given:
e x € CV, a vector of N independent zero-mean random variables
e covariance matrix X = E [xx*], sparse in most applications

e m linear measurements y = Ax, with measurement matrix A € CmxN

Determine X from Y
Y =E[yy'] = AE [xx"] A" = AXA"
using vectorization...
7= (A®A)%
with § = vec{Y} and X = vec {X}

= Compressive Sensing setting!
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Recap of relevant results in Compressive Sensing

Problem setting: y = Ax with A € C™*V, where m < N

Definition (Restricted Isometry Property)

A € C™*N s said to fulfill the k-th restricted isometry property (abbrv. RIP)
with the restricted isometry constant d; (abbrv. RIC) if

(1= 6i) Il < A3 < (1+6x) [IxIl3
holds for all k-sparse x € CV.

Theorem
If A fulfills the 2k-th RIP with RIC

1
52k<§

then every k-sparse x can be recovered uniquely by the ¢1-minimization (convex).
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Covariance matrix sketching & Compressive Sensing

Covariance matrix sketching as compressive sensing problem:
min [|Z]|, subjectto ¥ =(A®A)X
with ¥ = vec {Y} and X = vec {X}

Question: Are there "good” (deterministic) matrices for compressive sensing
with Kronecker structure?

— convex relaxation: #1-minimization instead of £p-minimization
e Result on RIC by Duarte and Baraniuk: &, (A ® A) > 6 (A)

= For fixed sparsity, RIC of the Kronecker structured matrix is lower bounded by
the RIC of the non-Kronecker matrix despite having quadratically more
measurements.
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Simulations: non-Kronecker structured matrices
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Random Partial Fourier: Rows of the DFT matrix are chosen at random to form

the sensing matrix.

EHF (Equiangular harmonic frames): The sensing matrix is a " carefully”

chosen minor of the DFT matrix.
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Simulation: Kronecker structured Gaussian

Kronecker structured Gaussian
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Kronecker structured Gaussian matrices seem to be "bad” for CS.

From previous slide: &, (A) < 6, (A ® A) < 205 (A) + 6k (A)?
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Simulation: Kronecker structured partial Fourier

Kronecker structured random Fourier
: :
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In contrast to Gaussian: random Fourier & Kronecker structured random Fourier
matrices perform similarly.
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Simulation: Kronecker structured EHF

Kronecker structured EHF
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Same observation as in the slide before: EHF & Kronecker structured EHF
perform similarly.

— An attempt of explanation based on Statistical Isometry Property (Def. by
Calderbank, Howard, Jafarpour, 2010).
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Standard CS versus StRIP Approach

Standard CS

e random sensing matrices
e deterministic vectors x

e recovery guarantee for all k-sparse
vectors x

e recovery guarantee with high
probability for random A

= randomness in the choice of the
sensing matrix A

StRIP

deterministic sensing matrix
stochastic data vectors x

recovery guarantee with high
probability for random choice of x

recovery guarantee for deterministic
choice of A

randomness in the choice of the
data vector x
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Statistical Restricted Isometry Property (StRIP) - 1

Following definition of StRIP is by Calderbank, Howard and Jafarpour (2010).

Definition (StRIP & UStRIP)
e A= T%(I) € C™*N has (k,d,¢€) - StRIP if
(1—0) x5 < |Ax]5 < (1+0) [Ixl5

holds with probability 1 — € for a random k-sparse vectors x (uniformly distributed
over all k-sparse vectors).
e Ais (k,0,€)-uniqueness-guaranteed StRIP (UStRIP) if

Ax =Az <— z=x, Vk-sparsez

satisfied with probability 1 — .
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Statistical Restricted Isometry Property (StRIP) - 2

Definition (7-StRIP)

A= ﬁ@ € C™*N with all entries of ® having absolute value 1, is -StRIP if
Stl - St3 holds.

Stl: e rows of ® are orthogonal

e sum of all elements in a row is equal to zero
St2: e columns of ® form a multiplicative group under pointwise multiplication

St3: e >0 st D) b [l]\2 < m?~" Vi apart from the identity column
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Probabilistic recovery guarantee of StRIP

Theorem (Calderbank, Howard, Jafarpour)

Let A = \/%CD € C™*N be an n-StRIP matrix withn > 1/2. Ifk <1+ (N —1)§
and

(klog N)
m2 e

for some constant ¢ > 0 then A is (k,d, 2¢)-UStRIP with
2
€=2exp (— (6— %) ’g,:)

e Theorem connects structure of a deterministic CS matrix with probabilistic
recovery guarantee.

e Easy applicability of StRIP on deterministic matrices (checking RIP is NP-Hard).
e linear scaling of the number of measurements m with the sparsity &

e Main idea: use this theorem for Kronecker structured matrices.
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n-StRIP for Kronecker structured matrices

Theorem

Assume A € C"*V s 14-StRIP and B € C™*M s np-StRIP, then the following
holds.

(a) A is nx-StRIP with ngx = na.
(b) The matrix C = A ® B € C"*NM s no-StRIP with

In(n) .
nA In(nm) if nA < me

nc =

B llln((:;z) if nAa > m"B

Corollary
If A € C™*N js n-StRIP, then the matrix A ® A € C™"*N* js (n/2)-StRIP.

e linear scaling of the number of measurements m? with the sparsity
—m?2>ck log N

e search for deterministic matrices A s.t. na > 1.
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n-StRIP matrices with 1 > 1

e Coherence i of a matrix A is defined by

n(A) = max [(a;a;)
i,J s.t. i#£j

e using the Welch bound, for a matrix A fulfilling the 7-StRIP definition follows:

N-—-m 1
mv =1 M=

= upper bound on 7:

<1im (Xt !
n ——
= N—m) ln(m)

= any 7-StRIP matrix coming very close to the Welch bound
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Example (Equiangular Harmonic Frames)

EHFs are partial Fourier matrices with u = %
construction is based on difference sets

{0,1,3} forms a (7,3,1) diff. set in Z; (integers modulo 7)
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Summary

e Investigation of Kronecker structured sensing matrices for compressive sensing
e Used the StRIP approach for Kronecker structured sensing matrices
e Proved statistical recovery guaranties where the number of measurements

scales linearly with the sparsity

Deterministic Matrices

Kronecker structured EHF
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no explanation yet
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