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Motivation: Covariance matrix sketching

Given:

• x ∈ CN , a vector of N independent zero-mean random variables

• covariance matrix X = E [xx∗], sparse in most applications

• m linear measurements y = Ax, with measurement matrix A ∈ Cm×N

Determine X from Y

Y = E [yy∗] = AE [xx∗] A∗ = AXA∗

using vectorization...

ỹ =
(
Ā⊗A

)
x̃

with ỹ = vec {Y} and x̃ = vec {X}

⇒ Compressive Sensing setting!
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Recap of relevant results in Compressive Sensing

Problem setting: y = Ax with A ∈ Cm×N , where m� N

Definition (Restricted Isometry Property)

A ∈ Cm×N is said to fulfill the k-th restricted isometry property (abbrv. RIP)
with the restricted isometry constant δk (abbrv. RIC) if

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22

holds for all k-sparse x ∈ CN .

Theorem
If A fulfills the 2k-th RIP with RIC

δ2k <
1

3

then every k-sparse x can be recovered uniquely by the `1-minimization (convex).
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Covariance matrix sketching & Compressive Sensing

Covariance matrix sketching as compressive sensing problem:

min ‖x̃‖0 subject to ỹ =
(
Ā⊗A

)
x̃

with ỹ = vec {Y} and x̃ = vec {X}

Question: Are there ”good” (deterministic) matrices for compressive sensing
with Kronecker structure?

→ convex relaxation: `1-minimization instead of `0-minimization

• Result on RIC by Duarte and Baraniuk: δk
(
A⊗A

)
≥ δk (A)

⇒ For fixed sparsity, RIC of the Kronecker structured matrix is lower bounded by
the RIC of the non-Kronecker matrix despite having quadratically more
measurements.
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Simulations: non-Kronecker structured matrices

Random Gaussian: Each entry of the sensing matrix is a Gaussian random
variable.
Random Partial Fourier: Rows of the DFT matrix are chosen at random to form
the sensing matrix.
EHF (Equiangular harmonic frames): The sensing matrix is a ”carefully”
chosen minor of the DFT matrix.
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Simulation: Kronecker structured Gaussian

Kronecker structured Gaussian matrices seem to be ”bad” for CS.

From previous slide: δk (A) ≤ δk
(
A⊗A

)
≤ 2δk (A) + δk (A)

2
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Simulation: Kronecker structured partial Fourier

In contrast to Gaussian: random Fourier & Kronecker structured random Fourier
matrices perform similarly.
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Simulation: Kronecker structured EHF

Same observation as in the slide before: EHF & Kronecker structured EHF
perform similarly.
→ An attempt of explanation based on Statistical Isometry Property (Def. by
Calderbank, Howard, Jafarpour, 2010).

9 / 17



Standard CS versus StRIP Approach

Standard CS

• random sensing matrices

• deterministic vectors x

• recovery guarantee for all k-sparse
vectors x

• recovery guarantee with high
probability for random A

⇒ randomness in the choice of the
sensing matrix A

StRIP

• deterministic sensing matrix

• stochastic data vectors x

• recovery guarantee with high
probability for random choice of x

• recovery guarantee for deterministic
choice of A

⇒ randomness in the choice of the
data vector x
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Statistical Restricted Isometry Property (StRIP) - 1

Following definition of StRIP is by Calderbank, Howard and Jafarpour (2010).

Definition (StRIP & UStRIP)

• A = 1√
m

Φ ∈ Cm×N has (k, δ, ε) - StRIP if

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22

holds with probability 1− ε for a random k-sparse vectors x (uniformly distributed
over all k-sparse vectors).
• A is (k, δ, ε)-uniqueness-guaranteed StRIP (UStRIP) if

Ax = Az ⇐⇒ z = x , ∀k-sparse z

satisfied with probability 1− ε.
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Statistical Restricted Isometry Property (StRIP) - 2

Definition (η-StRIP)

A = 1√
m

Φ ∈ Cm×N with all entries of Φ having absolute value 1, is η-StRIP if

St1 - St3 holds.

St1: • rows of Φ are orthogonal

• sum of all elements in a row is equal to zero

St2: • columns of Φ form a multiplicative group under pointwise multiplication

St3: • ∃η > 0 s.t. |
∑m
l=1 φj [l]|2 ≤ m2−η ∀l apart from the identity column
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Probabilistic recovery guarantee of StRIP

Theorem (Calderbank, Howard, Jafarpour)

Let A = 1√
m

Φ ∈ Cm×N be an η-StRIP matrix with η > 1/2. If k < 1 + (N − 1)δ

and

m ≥ (k logN)

δ2

for some constant c > 0 then A is (k, δ, 2ε)-UStRIP with

ε = 2 exp

(
−
(
δ − k−1

N−1

)2
mη

8k

)
.

• Theorem connects structure of a deterministic CS matrix with probabilistic
recovery guarantee.

• Easy applicability of StRIP on deterministic matrices (checking RIP is NP-Hard).

• linear scaling of the number of measurements m with the sparsity k

• Main idea: use this theorem for Kronecker structured matrices.
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η-StRIP for Kronecker structured matrices
Theorem
Assume A ∈ Cn×N is ηA-StRIP and B ∈ Cm×M is ηB-StRIP, then the following
holds.

(a) A is ηA-StRIP with ηA = ηA.

(b) The matrix C = A⊗B ∈ Cnm×NM is ηC-StRIP with

ηC =


ηA

ln(n)
ln(nm) if nηA ≤ mηB

ηB
ln(m)
ln(nm) if nηA > mηB

Corollary

If A ∈ Cm×N is η-StRIP, then the matrix A⊗A ∈ Cm2×N2

is (η/2)-StRIP.

• linear scaling of the number of measurements m2 with the sparsity
→ m2 ≥ ck logN
• search for deterministic matrices A s.t. ηA > 1.

14 / 17



η-StRIP matrices with η > 1

• Coherence µ of a matrix A is defined by

µ (A) = max
i,j s.t. i6=j

|〈ai,aj〉|

• using the Welch bound, for a matrix A fulfilling the η-StRIP definition follows:

√
N −m

m (N − 1)
≤ µ (A) ≤ 1√

mη

⇒ upper bound on η:

η ≤ 1 + ln

(
N − 1

N −m

)
1

ln (m)

⇒ any η-StRIP matrix coming very close to the Welch bound
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Example (Equiangular Harmonic Frames)

EHFs are partial Fourier matrices with µ =
√

N−m
m(N−1)

construction is based on difference sets

{0, 1, 3} forms a (7, 3, 1) diff. set in Z7 (integers modulo 7)

DFT7 =



1 1 1 1 1 1 1
1 ω1 ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω1 ω3 ω5

1 ω3 ω6 ω2 ω5 ω1 ω4

1 ω4 ω1 ω5 ω2 ω6 ω3

1 ω5 ω3 ω1 ω6 ω4 ω2

1 ω6 ω5 ω4 ω3 ω2 ω1



EHF3 =

 1 1 1 1 1 1 1
1 ω1 ω2 ω3 ω4 ω5 ω6

1 ω3 ω6 ω2 ω5 ω1 ω4
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Summary
• Investigation of Kronecker structured sensing matrices for compressive sensing

• Used the StRIP approach for Kronecker structured sensing matrices

• Proved statistical recovery guaranties where the number of measurements
scales linearly with the sparsity

Deterministic Matrices

StRIP approach

Random Partial Fourier

no explanation yet
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