CASCADE: Channel-Aware Structured Cosparse Audio DEclipper

Problem definition

The problem:

Estimate a multichannel audio signal \tilde{x} from its saturated version \tilde{y} .

- ▶ $\mathbf{Y} \in \mathbb{R}^{J \times K}$ an overlapping frame (J samples, K channels) of $\tilde{\mathbf{y}}$;
- \blacktriangleright \mathbf{y}_{jk} (resp. \mathbf{x}_{jk}) the jth sample recorded on the kth channel from \mathbf{Y} (resp. X);
- \succ τ_k the hard-clipping level in the kth channel.

Clipping model:

for $|\mathbf{x}_{\mathsf{jk}}| \leq \tau_{\mathsf{k}};$ otherwise.

Channel-aware structured cosparse modeling

Structured sparse prior on \mathbf{Z} and cosparse prior on \mathbf{X} [1].

Clément Gaultier, Nancy Bertin, Rémi Gribonval Univ Rennes, Inria, CNRS, IRISA, France

Method

How to get a declipped frame estimate $\hat{\mathbf{X}}$? Design an iterative algorithm based on ADMM [2] that alternatively projects $\hat{\mathbf{X}}$ on:

- 1. The modeling constraint thanks to a specific sparsifying operator;
- 2. The declipping constraint thanks to a data-fidelity projection.

Tools

Sparsifying operator Group-Empirical Wiener [3]: $\mathcal{S}_{\mu}(\mathbf{Z})_{\mathsf{pk}} = \mathbf{Z}_{\mathsf{pk}} \cdot \left(1 - \frac{\mu^2}{\|\mathbf{z}_{\mathsf{p}}\|_2^2}\right)_{-1}$

Data-fidelity projection Optimization problem: $\underset{\mathbf{X}\in\Theta}{\operatorname{minimize}} \|\mathbf{A}\mathbf{X} - \mathbf{Z}\|_{\mathsf{F}}^2$ (1) $\left\{ \begin{array}{l} \mathbf{X}_{\Omega_r} = \mathbf{Y}_{\Omega_r}; \\ \mathbf{X} \mid \mathbf{X}_{\Omega_+} \succcurlyeq \mathbf{Y}_{\Omega_+}; \\ \mathbf{X}_{\Omega_-} \preccurlyeq \mathbf{Y}_{\Omega_-}. \end{array} \right\}$ $\Theta = \cdot$

Closed form solution for (1):

CASCADE Algorithm

Sparsification step: $\mathbf{Z}^{(\mathsf{i})} = \mathcal{S}_{\mu^{(\mathsf{i}-1)}}(\mathbf{A}\hat{\mathbf{X}}^{(\mathsf{i}-1)} + \mathbf{U}^{(\mathsf{i}-1)})$ Projection step on the declipping constraint: $\hat{\mathbf{X}}^{(i)} = \operatorname{argmin} \|\mathbf{A}\mathbf{X} - \mathbf{Z}^{(i)} + \mathbf{U}^{(i-1)}\|_{\mathsf{F}}^2$ subject to $\mathbf{X} \in \Theta$ Update step: $\mu^{(i)} = \alpha \mu^{(i-1)}, \ \mathbf{U}^{(i)} = \mathbf{U}^{(i-1)} + \mathbf{A}\hat{\mathbf{X}}^{(i)} - \mathbf{Z}^{(i)}$

The joint use of cosparse and structured sparsity models is particularly efficient on music and speech multichannel data. CASCADE numerically outperforms state-of-the-art simple cosparse A-SPADE algorithm [1] by dB to more than 3 dB while retaining very limited runtime overcost.

8-channels recordings excerpts from the VoiceHome2 Corpus [4]. 477 different examples artificially saturated at 5 SDR.

Algorithm		CASCADE		A-SPADE			Algorithm		CASCADE		A-SPADE		
Redundancy		R=1	R=2	R=1	R=2		Re	dundancy	R=1	R=2	R=1	R=2	
Input SDR	5	167	398	73	190		Input SDR	5	11.11	10.76	9.31	9.63	
	10	120	265	59	148			10	12.39	12.45	10.57	10.79	
	15	80	177	42	103			15	13.31	13.39	11.20	11.37	
	20	54	119	29	72			20	14.01	14.32	11.67	11.79	
	25	37	78	20	50			25	14.40	14.44	11.73	11.68	
(a)	(a) Runtime (ratio to realtime processing)							(b) Corresponding improvements (Δ SDR)					

References:

- Signal Separation (LVA/ICA), pp. 243–250, Liberec, Czech Republic: Springer, 2015.
- multipliers," Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
- (EUSIPCO), pp. 464–468, IEEE, 2015.

 \mathbf{Z}_{pk}

 \blacktriangleright Ω_+ , (resp. Ω_-) set of positively (negatively) clipped indices;

 \mathbf{Z}_{p}

```
\blacktriangleright \geq, \preccurlyeq component-wise
comparisons.
```

- $\int \mathbf{j}\mathbf{k} \in \Omega_+, (\mathbf{A}^{\mathsf{H}}\mathbf{Z})_{\mathbf{j}\mathbf{k}} \geq \tau_{\mathbf{k}};$
- $\mathbf{j}\mathbf{k} \in \Omega_{-}, (\mathbf{A}^{\mathsf{H}}\mathbf{Z})_{\mathbf{j}\mathbf{k}} \leq -\tau_{\mathbf{k}};$

Conclusion

Experiments

Runtime

[1] S. Kitić, N. Bertin, and R. Gribonval, "Sparsity and cosparsity for audio declipping: a flexible non-convex approach," in Latent Variable Analysis and

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of

[3] C. Févotte and M. Kowalski, "Hybrid sparse and low-rank time-frequency signal decomposition," in 23rd European Signal Processing Conference

[4] N. Bertin, E. Camberlein, R. Lebarbenchon, E. Vincent, S. Sivasankaran, I. Illina, and F. Bimbot, "VoiceHome-2, an extended corpus for multichannel speech processing in real homes," Speech Communication, 2018.