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1. INTRODUCTION

Joint estimation of time-varying linear prediction
(TVLP) filter coefficients and the excitation signal
parameters for long duration speech segments

Salient Features:

e random (Gaussian prior for the prediction coeflicients pro-
motes sparse filters.

e Student’s-t excitation model: random (Gaussian excita-
tion with time-dependent Gamma distributed precision.
Learning parameters of Gamma prior can adapt to dif-
ferent excitation distributions.

e Maximum likelihood parameter estimation: iterative Ex-
pectation Maximization (EM) algorithm.

2. TIME VARYING LINEAR PREDICTION

Speech xz[n| is modeled as the output of a time-varying
auto-regressive system of order p, excited by e[n]

p
=D axlnla

k=1

k| +eln], ne |0 N —1].

Signal modeling = estimate {ax|n|} under some as-
sumptions about e|n|.

Under-determined: Np parameters and N observations.

Solution: Parametric model for ag|n|

q

ar[n] =) arju;nl,

g=1

{u;|n]} is a known basis set.
Examples: DCT, Fourier basis, Power series etc.

In vector form:

a4 e[n] V n, and x = Xa

rln] =x

Speech excitation is sparse for voiced sounds, Gaussian
like for unvoiced sounds.

For long duration segments, the excitation distribution is
non-Gaussian.

U5 or 1 minimization are not optimal for non-Gaussian
excitation.
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3. PROPOSED SIGNAL MODEL

e [xcitation signal is independent (Gaussian distributed,
with time dependent variance

\/%GXP

e Precision -, is Gamma distributed,
50{]\/' — N—1
p(Tla, B) = (H’Y )eXp (52%)
n=0

Marginal distribution for z|n] is Student’s-t.

p(x|a,T) z[n] — Xga)ﬂ .

e Prediction filter a is Gaussian distributed,

1
p(a|A) o< |A|Y? exp (—§aTAa> . A =diag(\;).

Independent Gaussian model promotes sparse predictor.

e Joint distribution

p(x,a,T'|0) = p(x|a,T")p(a]A)p(T|a, 8).

e Total log-likelihood

N—1
loglp(x,a,T'|0)] x (o — 1) Zlog%, 52%
n=0
1 1
+ Nalog(8) — Nlog(T'(a)) + 5 log(|A]) — ja" Aa

+ = Nzl {log n) = %%( ] —nga)Z} |

4. MAXIMUM LIKELIHOOD ESTIMATION
Log-Likelihood: log p(x) > £L(q, 0)

L(q,0) = Er a [logp(x,T,al0)] — Er ) [logg(T,a)],

for any q(I',a) defined over the joint support of {I',a}, and
0={a,p,A}.

Maximize using EM-like approach:

e E-step: Maximize L£(q,0) w.r.t q(I',a) for fixed 6.

o Q(Faa) —
tractable.

p(T',a|x) achieves objective, but not

— Assume factorization ¢(I';a) = ¢(I')g(a), and per-
form coordinate ascent: Mean field variational in-
ference.

— Closed form expressions for ¢(.): conjugate priors.

e M-step: Maximize L(q,0) w.r.t 8 for fixed ¢(T, a).

L(q,0) < L(q",0) < L(q",07)

5. ALGORITHM STEPS

L(q,0) = ErEa logp(x,T',a]0)] — Er [log ¢(I')| Ea [log g(a)]

Algorithm:

Inputs: x, X.
Initialize i = 0, 8° = {1,0.001,0.011}.

while not converged do
E-step:
Maximize w.r.t a:

log ¢'Y(a) o Er {logp(X,I‘,aIH(i_l))}

q(i)(a) is Gaussian: N(é, A)

Maximize w.r.t v,:

log ¢\ (7,) o< Eq [logp(x, T a|9(i_1))}

q(i)(fyn) 1s Gamma distributed: F(ozi %,ﬁi
X, a)°}).

M-step: «

loga — Y (a) = log ( ZE{%L}) BN ZE{log Yn) }

1 1 Z
Bi+l — Nqitl ZE{%} LA =
1 <1+ 1
Output: a

+1 is a solution to,

[E{aaT}]

6. EVALUATION (SYNTHETIC SIGNALS)

e Synthetic signals are generated using the TVLP model:
LP order P=10, DCT basis order ¢ = 7.

Coefficient trajectories derived from 256 ms segments
taken from 10 TIMIT sentences (142 segments).

Excitation signal is generated as

q|n] is a periodic impulse train 250 H z; w|n| is zero mean

white Gaussian noise of variance o2

is chosen such that Impulse to Noise Ratio (INR)
defined below has a specific value,

N—1
1
INR (dB) = 10log;, (N > ¢*[n]/o;
n=0

small INR = Gaussian excitation;
high INR = Sparse excitation.

e Performance measured using average spectral difference
(SPDIFF) measure.

7. SPDIFF vs INR
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Average SPDIFF measure for TVLP analysis.
e (Quasi stationary analysis has the highest SPDIFF.

e Sparse excitation model based methods perform better
for high INR, and Gaussian excitation model based meth-
ods perform better for small INR.

e Ground truth model order (10,7)

— For Gaussian like excitation (INR= —20 dB), LS
TVLP performs better.

— For sparse excitation (INR= —20 dB), SP TVLP
performs better.

— Intermediate values for INR, Bayesian TVLP per-
forms better.

e Over estimated model order (10, 13)

— Bayes TVLP performs better for all values of INR.

** Proposed Bayesian TVLP approach performs better for
different excitation signal types.

8. EVALUATION (SPEECH SIGNAL)

Wideband Spectrogram Quasn LP

MMWWH

01(a) 02 0 0.1(b) 02 01(c) 02
LS-TVLP SP-TVLP Proposed |

>Frequency (kHz)

0.2 0

>time (sec)

: g) 0.1 (h) 0.2 0.1(i)

il

2 4 618 10 12

246.81012 2 4 6 8 10 12
J >DCT Coefficient index

-f) TVLP model of order (8,7), (g-1) TVLP model of order

—|>1|Axmp1itude

~—~
0 .
P—h

~~
ek
o

~—

IEEE Signal Processing Letters, Volume: 24, Issue: 4, April 2017



