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1. Introduction

Joint estimation of time-varying linear prediction
(TVLP) filter coefficients and the excitation signal

parameters for long duration speech segments

Salient Features:
• random Gaussian prior for the prediction coefficients pro-

motes sparse filters.

• Student’s-t excitation model: random Gaussian excita-
tion with time-dependent Gamma distributed precision.
Learning parameters of Gamma prior can adapt to dif-
ferent excitation distributions.

• Maximum likelihood parameter estimation: iterative Ex-
pectation Maximization (EM) algorithm.

2. Time varying linear prediction

• Speech x[n] is modeled as the output of a time-varying
auto-regressive system of order p, excited by e[n]

x[n] =

p∑
k=1

ak[n]x[n− k] + e[n], n ∈ [0 N − 1].

• Signal modeling =⇒ estimate {ak[n]} under some as-
sumptions about e[n].

• Under-determined: Np parameters and N observations.

• Solution: Parametric model for ak[n]

ak[n] =

q∑
j=1

akjuj [n],

{uj [n]} is a known basis set.
Examples: DCT, Fourier basis, Power series etc.

• In vector form:

x[n] = xTna + e[n] ∀ n, and x = Xa + e.

• Speech excitation is sparse for voiced sounds, Gaussian
like for unvoiced sounds.

• For long duration segments, the excitation distribution is
non-Gaussian.

• `2 or `1 minimization are not optimal for non-Gaussian
excitation.

3. Proposed signal model

• Excitation signal is independent Gaussian distributed,
with time dependent variance

p(x|a,Γ) =

N−1∏
n=0

√
γn
2π

exp
[
−γn

2
(x[n]− xTna)2

]
.

• Precision γn is Gamma distributed,

p(Γ|α, β) =
βαN

Γ(α)N

(
N−1∏
n=0

γα−1
n

)
exp

(
−β

N−1∑
n=0

γn

)
.

Marginal distribution for x[n] is Student’s-t.

• Prediction filter a is Gaussian distributed,

p(a|Λ) ∝ |Λ|1/2 exp

(
−1

2
aTΛa

)
; Λ = diag(λi).

Independent Gaussian model promotes sparse predictor.

• Joint distribution

p(x,a,Γ|θ) = p(x|a,Γ)p(a|Λ)p(Γ|α, β).

• Total log-likelihood

log[p(x,a,Γ|θ)] ∝ (α− 1)
N−1∑
n=0

log(γn)− β
N−1∑
n=0

γn

+Nα log(β)−N log(Γ(α)) +
1

2
log(|Λ|)− 1

2
aTΛa

+
1

2

N−1∑
n=0

[
log(γn)− 1

2
γn(x[n]− xTna)2

]
.

4. Maximum likelihood estimation

Log-Likelihood: log p(x) ≥ L(q,θ)

L(q,θ) , E(Γ,a) [log p(x,Γ,a|θ)]− E(Γ,a) [log q(Γ,a)] ,

for any q(Γ,a) defined over the joint support of {Γ,a}, and
θ = {α, β,Λ}.

Maximize using EM-like approach:

• E-step: Maximize L(q,θ) w.r.t q(Γ,a) for fixed θ.

– q(Γ,a) = p(Γ,a|x) achieves objective, but not
tractable.

– Assume factorization q(Γ,a) = q(Γ)q(a), and per-
form coordinate ascent: Mean field variational in-
ference.

– Closed form expressions for q(.): conjugate priors.

• M-step: Maximize L(q,θ) w.r.t θ for fixed q(Γ,a).

L(q,θ) ≤ L(q∗,θ) ≤ L(q∗,θ∗)

5. Algorithm steps

L(q,θ) = EΓEa [log p(x,Γ,a|θ)]− EΓ [log q(Γ)]Ea [log q(a)]

Algorithm:
Inputs: x, X.
Initialize i = 0, θ0 = {1, 0.001, 0.01I}.

while not converged do
E-step:
Maximize w.r.t a:

log q(i)(a) ∝ EΓ

[
log p(x,Γ,a|θ(i−1))

]
q(i)(a) is Gaussian: N (ã, Λ̃).
Maximize w.r.t γn:

log q(i)(γn) ∝ Ea

[
log p(x,Γ,a|θ(i−1))

]
q(i)(γn) is Gamma distributed: Γ(αi + 1

2 , β
i + 1

2E{(x[n] −
xTna)2}).

M-step: αi+1 is a solution to,

logα− ψ(α) = log

(
1

N

N∑
n=1

E{γn}

)
− 1

N

N∑
n=1

E{log(γn)},

1

βi+1
=

1

Nαi+1

N∑
n=1

E{γn}, 1/λi+1
k =

[
E{aaT }

]
kk

i← i+ 1

Output: ã.

6. Evaluation (synthetic signals)

• Synthetic signals are generated using the TVLP model:
LP order P=10, DCT basis order q = 7.

• Coefficient trajectories derived from 256 ms segments
taken from 10 TIMIT sentences (142 segments).

• Excitation signal is generated as

e[n] = q[n] + w[n]

q[n] is a periodic impulse train 250 Hz; w[n] is zero mean
white Gaussian noise of variance σ2

w.

• σ2
w is chosen such that Impulse to Noise Ratio (INR)

defined below has a specific value,

INR (dB) = 10 log10

(
1

N

N−1∑
n=0

q2[n]/σ2
w

)

small INR =⇒ Gaussian excitation;
high INR =⇒ Sparse excitation.

• Performance measured using average spectral difference
(SPDIFF) measure.

7. SPDIFF vs INR
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Average SPDIFF measure for TVLP analysis.

• Quasi stationary analysis has the highest SPDIFF.

• Sparse excitation model based methods perform better
for high INR, and Gaussian excitation model based meth-
ods perform better for small INR.

• Ground truth model order (10, 7)

– For Gaussian like excitation (INR= −20 dB), LS
TVLP performs better.

– For sparse excitation (INR= −20 dB), SP TVLP
performs better.

– Intermediate values for INR, Bayesian TVLP per-
forms better.

• Over estimated model order (10, 13)

– Bayes TVLP performs better for all values of INR.

** Proposed Bayesian TVLP approach performs better for
different excitation signal types.

8. Evaluation (Speech Signal)
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