

Ting Dang^{1,2}, *Vidhyasaharan Sethu*¹, *Eliathamby Ambikairajah*^{1,2}

¹ School of Electrical Engineering and Telecommunications, UNSW, Australia ² ATP Research Laboratory, DATA61 (CSIRO), Australia

Content

- **1. Continuous Emotion Prediction**
- 2. Inter-rater Variability
- 3. Dynamic multi-rater GMR
- 4. Experimental Results
- 5. Conclusion

Continuous Emotion Prediction

> Emotion Representation

- Categorical Representation
- --- Happy, anger, sad, etc.

- Dimensional Representation
- --- Affective attribute: arousal, valence

Continuous Emotion Prediction

Continuous Emotion Prediction

Inter-rater Variability

- Averaging ratings ignore the discrepancies between raters
- Intense emotions are easier to recognize while the subtle emotions are more ambiguous.
- Other factors (i.e. recording conditions) may affect rater's judgements

Inter-rater Variability

Inter-rater Variability

- Gaussian assumption of label distribution may not be true
- Multi-rater Gaussian mixture regression (GMR) does not consider temporal dependencies

Inter-rater Variability

- Incorporation of both *forward and backward Kalman filters* into multi-rater GMR to account for the *temporal dependencies in both directions*.
- Label distribution given by GMM instead of single Gaussian.
- Measure to *quantify uncertainty* from predicted distribution (GMM).

Gaussian Mixture Regression(GMR)

> GMR model

• Joint distribution of feature vectors and labels

Probability distribution

• Training vectors are generated by concatenating the feature vector and *mean rating*

Incorporation of uncertainty

• Training vectors are generated by concatenating the feature vector and *individual annotation*

Gaussian Mixture Regression(GMR)

Gaussian Mixture Regression(GMR)

> Plot of uncertainty of emotion predictions

• Standard deviation of six raters correlates with the predicted uncertainty of emotion

Limitations

- The assumption of Gaussianity over label distribution may not hold true
- GMR does not model temporal dependencies between frames

- Adopting predicted GMM distribution directly
- Kalman filter is adopted to explore the temporal dependencies

- Adopting predicted GMM distribution directly
- Kalman filter is adopted to explore the temporal dependencies
- Vector representation of GMM distributions is adopted by Kalman filter

≻ Kalman filter

• v_t is treated as the observation of label distribution and s_t is the underlying distribution that depends on the long-term dynamics

$$s_t = Fs_{t-1} + w_{t-1}$$
 (noise $w_{t-1} \sim N(0, Q)$)

$$\boldsymbol{v}_t = \boldsymbol{H}\boldsymbol{s}_t + \boldsymbol{r}_t \quad (noise \ \boldsymbol{r}_t \sim N(0, \boldsymbol{R}))$$

- During training phase, parameters of Kalman filters (F, Q, H and R) are estimated where the observations v_t and the ground truth s_t are known.
- During test phase, Kalman filters are utilised to predict the label distribution \hat{s}_t based on the GMR prediction v_t and the prediction of previous frames \hat{s}_{t-1}

Forward and backward Kalman filter

 $P(\boldsymbol{s}_t | \boldsymbol{s}_{t-1})$ **s**_t s_{t-} Forward KF 1 ٠ v_{t-1} \boldsymbol{v}_t $P(\boldsymbol{s}_t | \boldsymbol{s}_{t+1})$ (s_{t+1}) **s**_t Backward KF 2 ٠ v_t v_{t+1} Final label prediction $\hat{s}_t = \alpha s_t^{KF1} + (1 - \alpha) s_t^{KF2}$ ٠

$$\hat{\boldsymbol{s}}_t \longrightarrow [w, u, \Sigma]$$

Measures of Uncertainty

Probabilistic uncertainty volume PUV

• Probabilistic uncertainty volume estimates the local variability of a distribution

• Given threshold θ , PUV_1 for a broad GMM (high uncertainty in left side) is larger than PUV_2 for a narrow GMM (low uncertainty in right side)

System Evaluation

• System evaluation focuses on the comparison between predicted and underlying label distributions

Predicted by system

Inferred from annotations (multiple raters)

Evaluation Metrics

• Underlying label distribution (GMM) is time-dependent and estimated in the label space by 6 annotations

Evaluation Metrics

- Underlying label distribution is time-dependent and estimated in the label space by 6 annotations
- Probabilistic uncertainty volume *PUV* is estimated for the predicted and underlying label distribution respectively for each frame

Correlation coefficient (CC)

- Pearson's correlation coefficient between probabilistic uncertainty volume estimated from the predicted and the underlying label distribution
- A higher CC indicates better predicted label distributions

Evaluation Metrics

• Underlying label distribution is time-dependent and estimated in the label space by 6 annotations

> KL divergence

- KL divergence estimates the similarity between the predicted and the underlying label distributions
- A smaller KL divergence indicates better predicted label distributions
- *Median and 25th and 75th percentiles* of KL divergence over entire test dataset are estimated (boxplot)

Experimental Settings

> Training phase

Test phase

* Github: https://github.com/TingDang90/Dynamic-multi-rater-GMR

Experimental Settings

> Experimental settings

- Database: RECOLA (6 annotations)
- Features: 5 functionals applied to 130 LLDs
- PCA : 40 dimensions
- Delays: 2s for arousal and 4s for valence
- GMM mixture number: [2,4,8]
- Linear coefficient of Kalman filter: [0, 1] with a step increase of 0.1
- Baseline:
 - --- Multi-rater GMR system
 - i. CC between the PUV of predicted Gaussian and PUV of underlying label distribution
 - ii. KL between the predicted Gaussian and the underlying label distribution(GMM)

Experimental Results

CC between predicted and true *PUV*

• CC between the *PUV* of the predicted and underlying label distributions (GMM)

Incorporating temporal dependencies benefits uncertainty prediction, especially for valence

Experimental Results

> KL divergence between predicted and underlying label distributions

• KL between the predicted and underlying label distribution (GMM) is computed

• The proposed system leads to more reliable and smoothed distribution prediction

Conclusion

- A dynamic multi-rater GMR to predict emotion uncertainty by considering the temporal dependencies is proposed, which is achieved by applying Kalman filters.
- Probabilistic uncertainty volume is introduced as a measure to quantify uncertainty of emotion predictions (GMM).
- The statistics of KL divergence between predicted and underlying label distributions indicate that incorporating temporal dependencies between frames leads to a smoother change in the label distributions
- Future work will focus on relaxing linearity assumption about the evolution of emotion label distributions

Reference

[1] E. Mower *et al.*, "Interpreting ambiguous emotional expressions," in *Affective Computing and Intelligent Interaction and Workshops*, 2009. *ACII 2009. 3rd International Conference on*, 2009, pp. 1-8: IEEE.

[2] F. Ringeval *et al.*, "Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data," *Pattern Recognition Letters*, vol. 66, pp. 22-30, 2015.

[3] R. Lotfian and C. Busso, "Retrieving Categorical Emotions Using a Probabilistic Framework to Define Preference Learning Samples," in *INTERSPEECH*, 2016, pp. 490-494.

[4] F. Eyben, M. Wöllmer, and B. Schuller, "A multitask approach to continuous five-dimensional affect sensing in natural speech," *ACM Transactions on Interactive Intelligent Systems (TiiS)*, vol. 2, no. 1, p. 6, 2012.

[5] J. Han, Z. Zhang, M. Schmitt, M. Pantic, and B. Schuller, "From Hard to Soft: Towards more Human-like Emotion Recognition by Modelling the Perception Uncertainty," presented at the ACM MM 2017, Mountain View, 2017.

[6] M. S. Grewal, "Kalman filtering," in *International Encyclopedia of Statistical Science*: Springer, 2011, pp. 705-708.
[7] K. Somandepalli, R. Gupta, M. Nasir, B. M. Booth, S. Lee, and S. S. Narayanan, "Online Affect Tracking with Multimodal Kalman Filters," in *Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge*, 2016, pp. 59-66: ACM.

[8] T. Toda, A. W. Black, and K. Tokuda, "Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2222-2235, 2007.

[9] Z. Huang and J. Epps, "An Investigation of Emotion Dynamics and Kalman Filtering for Speech-based Emotion Prediction," Proc. Interspeech 2017, pp. 3301-3305, 2017.

[10] N. Cummins, V. Sethu, J. Epps, and J. Krajewski, "Probabilistic acoustic volume analysis for speech affected by depression," in INTERSPEECH, 2014, pp. 1238-1242.

[11] V. Sethu, J. Epps, and E. Ambikairajah, "Speaker variability in speech based emotion models-Analysis and normalisation," in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp. 7522-7526: IEEE.

Thank you

Thresholds of Probabilistic Uncertainty Volume

- Thresholds θ_i are defined in terms of percentiles of all the probabilities calculated by fitting the test features to the GMM models
- The optimal threshold θ_i is determined experimentally based on the system performance

CC between PUV from predicted and underlying distributions

Smoothness of PUV from underlying label distribution

KL divergence

- Symmetric KL divergence is utilised, with a larger KL divergence indicating a greater separation between them.
- Specifically, a Monte-Carlo estimate of the symmetric KL divergence proposed in [11] is utilised to quantify the separation between two distributions.

$$I_{SKL}(P_1, P_2) = \frac{1}{2} \left| \int_{x} P_1(x) \ln \frac{P_1(x)}{P_2(x)} dx + \int_{x} P_2(x) \ln \frac{P_2(x)}{P_1(x)} dx \right|$$
(3.1)

Experimental Results

> KL divergence between predicted and underlying label distributions

	Arousal		Valence	
	Proposed	Baseline	Proposed	Baseline
Mean	0.1439	1.6872	0.2085	1.8628
SD	0.1818	7.2714	0.2044	1.1236

--- Baseline means the KL diverenge calculated between predicted and underlying GMM distributions.

--- The proposed system leads to more reliable and smoothed distribution prediction

KL divergence

Uncertainty Prediction using Kalman filters

Uncertainty Prediction using Kalman filters

Figure. 25-75% quartile plotted as error bar, with 6 true annotations overlaid. utterance 2 in dev set Yellow: predicted GMM(ESN) ; Cyan: assumed 'ground truth'; Green: predicted GMM(Kalman filter)

Left: utterance 4 in dev set;

Kalman filter

CC between the standard deviation (SD) of predicted Gaussians and PUV (ground truth)

	Arousal	Valence
2 mix	0.0050	0.008
4mix	0.3726	0.075
8mix	0.4632	0.1243
СС	0.2392	0.0512

(b) valence