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Continuous	Emotion	Prediction

• Dimensional Representation

--- Affective attribute: arousal, valence

ØEmotion	Representation

• Categorical Representation

--- Happy, anger, sad, etc.
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Continuous	Emotion	Prediction
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Inter-rater Variability

• Averaging ratings ignore the discrepancies between raters
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• Other factors (i.e. recording conditions) may affect rater’s judgements

• Intense emotions are easier to recognize while the subtle emotions are more
ambiguous.
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Inter-rater Variability
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• Gaussian assumption of label distribution may not be true

• Multi-rater Gaussian mixture regression (GMR) does not consider temporal dependencies

Inter-rater Variability



Inter-rater Variability
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Dynamic	multi-rater GMR

• Incorporation of both forward and backward Kalman filters into multi-rater GMR to
account for the temporal dependencies in both directions.

• Label distribution given by GMM instead of single Gaussian.

• Measure to quantify uncertainty from predicted distribution (GMM).
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Gaussian	Mixture	Regression(GMR)
Ø GMR	model

𝜆 𝒛 = 𝑃(𝒙, 𝒚)

𝑃
𝒚 𝒕
𝒙 𝒕
,𝜆

𝒙,
𝒚

𝒚𝒕

𝒚𝒕∗

• Training vectors are generated by concatenating
the feature vector and mean rating

• Joint distribution of feature vectors and
labels

Ø Probability	distribution
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Ø Incorporation	of	uncertainty
• Training vectors are generated by concatenating

the feature vector and individual annotation
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Ø Predicted	label	distribution
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• Predicted label
distribution
(GMM)

12

Features 𝒙

Gaussian	Mixture	Regression(GMR)
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Gaussian	Mixture	Regression(GMR)

Ø Plot	of	uncertainty	of	emotion	predictions

• Standard deviation of six raters correlates with the predicted uncertainty of emotion  

Ø Limitations

• The assumption of Gaussianity over label distribution may not hold true

• GMR does not model temporal dependencies between frames

13

Annotations 
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Dynamic	multi-rater GMR
• Adopting predicted GMM distribution directly
• Kalman filter is adopted to explore the temporal dependencies
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Noisy observations of underlying label distribution 
(predictions independent of other frames)

Incorporating temporal dependencies



Dynamic	multi-rater GMR
• Adopting predicted GMM distribution directly
• Kalman filter is adopted to explore the temporal dependencies

• Vector representation of GMM distributions is adopted by Kalman filter
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𝒔8H4 𝒔8
𝑃(𝒔8|𝒔8H4)

𝒗8H4 𝒗8

ØKalman filter

𝒔8 = 𝑭𝒔8H4 + 𝒘8H4			(𝑛𝑜𝑖𝑠𝑒	𝒘8H4~𝑁(0, 𝑸))

𝒗8 = 𝑯𝒔8 + 𝒓8							(𝑛𝑜𝑖𝑠𝑒	𝒓8~𝑁(0, 𝑹))

• 𝒗8 is treated as the observation of label distribution and 𝒔8 is the underlying distribution
that depends on the long-term dynamics

𝒗8: noisy observation of 𝒔8
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𝒔8: underlying label distribution

• During training phase, parameters of Kalman filters (𝑭, 𝑸	,𝑯 and 𝑹) are estimated where
the observations 𝒗8 and the ground truth 𝒔8 are known.

• During test phase, Kalman filters are utilised to predict the label distribution 𝒔Z8 based on the
GMR prediction 𝒗8	and the prediction of previous frames 𝒔Z8H4

Dynamic	multi-rater GMR



Ø Forward	and	backward	Kalman filter

KF	1

KF	2𝒔8 𝒔8[4
𝑃(𝒔8|𝒔8[4)

𝒗8 𝒗8[4
𝒔Z8 = 𝛼𝒔8]^4 + (1 − 𝛼)𝒔8]^6

• Forward 

• Backward 

• Final label prediction

𝒔Z8 [𝑤, 𝑢, Σ]

𝒔8H4 𝒔8
𝑃(𝒔8|𝒔8H4)

𝒗8H4 𝒗8
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Dynamic	multi-rater GMR



Measures of Uncertainty
ØProbabilistic	uncertainty	volume

𝑃𝑈𝑉8 = c𝑓 𝒚 𝑑𝒚, 	𝑓 𝒚 = f1, 	𝑃 𝒚8 > 𝜃
0, 	𝑃(𝒚8) ≤ 𝜃

�

�

• Given threshold 𝜃, 𝑃𝑈𝑉4 for a broad GMM (high uncertainty in left side) is larger 
than 𝑃𝑈𝑉6 for a narrow GMM (low uncertainty in right side)

• Probabilistic uncertainty volume estimates the local variability of a distribution
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System	Evaluation	
• System evaluation focuses on the comparison between predicted and underlying

label distributions

Predicted by system
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Evaluation	Metrics

• Underlying label distribution (GMM) is time-dependent and estimated in the label
space by 6 annotations

Predicted label distribution Underlying label distribution
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Predicted label distribution
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Evaluation	Metrics

Ø Correlation	coefficient (CC)

• Pearson’s correlation coefficient between probabilistic uncertainty volume
estimated from the predicted and the underlying label distribution

• A higher CC indicates better predicted label distributions

• Probabilistic uncertainty volume is estimated for the predicted and underlying
label distribution respectively for each frame

• Underlying label distribution is time-dependent and estimated in the label space
by 6 annotations

𝑃𝑈𝑉
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Underlying label distribution



Evaluation	Metrics

• Underlying label distribution is time-dependent and estimated in the label space
by 6 annotations

Ø KL	divergence

• KL divergence estimates the similarity between the predicted and the underlying 
label distributions

• A smaller KL divergence indicates better predicted label distributions

• Median and 25th and 75th percentiles of KL divergence over entire test dataset 
are estimated (boxplot)
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Experimental	Settings
ØTraining	phase ØTest	phase
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* Github: https://github.com/TingDang90/Dynamic-multi-rater-GMR



Experimental	Settings

ØExperimental	settings

• Database: RECOLA (6 annotations)

• Features: 5 functionals applied to 130 LLDs 

• PCA : 40 dimensions

• Delays: 2s for arousal and 4s for valence

• GMM mixture number: [2,4,8]

• Linear coefficient of Kalman filter: [0, 1] with a step increase of 0.1

• Baseline:

--- Multi-rater GMR system

i. CC between the PUV of predicted Gaussian and PUV of underlying label distribution

ii. KL between the predicted Gaussian and the underlying label distribution(GMM)
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Experimental	Results
ØCC between	predicted	and	true			

0

0.1

0.2

0.3

0.4

0.5

0.6

2 mix 4 mix 8 mix

Baseline

Proposed

0.5s smoothing

1s smoothing

1.5s smoothing

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

2 mix 4 mix 8 mix

Baseline

Proposed

0.5s smoothing

1s smoothing

1.5s smoothing

(a) arousal

(b) valence

𝑃𝑈𝑉

• Incorporating temporal dependencies benefits uncertainty prediction, especially for 
valence

C
C

C
C

Mean filter to smooth the 
underlying emotion prediction

Mean filter to smooth the 
underlying emotion prediction

GMM mixture number

GMM mixture number

25

• CC between the PUV of the predicted and underlying label distributions (GMM)



Experimental	Results
Ø KL	divergence	between	predicted	and	underlying	label	distributions

• The proposed system leads to more reliable and smoothed distribution prediction

Baseline BaselineProposed Proposed

Arousal Valence
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• KL between the predicted and underlying label distribution (GMM) is computed



Conclusion

• A dynamic multi-rater GMR to predict emotion uncertainty by considering the
temporal dependencies is proposed, which is achieved by applying Kalman
filters.

• Probabilistic uncertainty volume is introduced as a measure to quantify
uncertainty of emotion predictions (GMM).

• The statistics of KL divergence between predicted and underlying label
distributions indicate that incorporating temporal dependencies between frames
leads to a smoother change in the label distributions

• Future work will focus on relaxing linearity assumption about the evolution of
emotion label distributions
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Thank	you
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• Thresholds 𝜃k are defined in terms of percentiles of all the probabilities calculated
by fitting the test features to the GMM models

• The optimal threshold 𝜃k	 is determined experimentally based on the system
performance

30

Thresholds	of	Probabilistic	Uncertainty	Volume

Predicted label distribution Underlying label distribution
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CC	between	PUV	from	predicted	and	underlying	distributions

Optimal threshold 𝜃k for arousal 
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Smoothness	of	PUV	from	underlying	label	distribution
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KL	divergence

𝐼m]n 𝑃4, 𝑃6 =
1
2 c 𝑃4 𝒙 𝐼𝑛

𝑃4 𝒙
𝑃6 𝒙

𝑑𝑥 + c 𝑃6 𝒙 𝐼𝑛
𝑃6 𝒙
𝑃4 𝒙

𝑑𝒙
�

𝒙

�

p
(3.1)

• Symmetric KL divergence is utilised, with a larger KL divergence indicating a greater 
separation between them. 

• Specifically, a Monte-Carlo estimate of the symmetric KL divergence proposed in [11] 
is utilised to quantify the separation between two distributions. 



Experimental	Results
Ø KL	divergence	between	predicted	and	underlying	label	distributions

Arousal Valence

Proposed Baseline Proposed Baseline

Mean 0.1439 1.6872 0.2085 1.8628
SD 0.1818 7.2714 0.2044 1.1236

--- Baseline means the KL diverenge calculated between predicted and underlying
GMM distributions.

--- The proposed system leads to more reliable and smoothed distribution prediction
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Uncertainty Prediction using Kalman filters
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Figure. 25-75% quartile plotted as error bar, with 6 true annotations overlaid. 
utterance 2 in dev set
Yellow: predicted GMM(ESN) ; Cyan: assumed ‘ground truth’; Green: predicted GMM(Kalman
filter)

Uncertainty Prediction using Kalman filters
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Left: utterance 4 in dev set; 
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Kalman filter
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CC between the standard deviation (SD) of predicted Gaussians and PUV (ground truth)

Arousal Valence

2	mix 0.0050 0.008

4mix 0.3726 0.075

8mix 0.4632 0.1243

CC 0.2392 0.0512
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