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Continuous Emotion Prediction

> Emotion Representation

* Categorical Representation * Dimensional Representation

--- Happy, anger, sad, etc. --- Affective attribute: arousal, valence
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Continuous Emotion Prediction
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Continuous Emotion Prediction
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Inter-rater Variability
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Averaging ratings ignore the discrepancies between raters

Intense emotions are easier to recognize while the subtle emotions are more
ambiguous.

Other factors (i.e. recording conditions) may affect rater’s judgements



Inter-rater Variability
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Inter-rater Variability

3 raters

Valence Rating

Multi-rater GMR
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* Gaussian assumption of label distribution may not be true

e Multi-rater Gaussian mixture regression (GMR) does not consider temporal dependencies



Valence Rating

Multi-rater GMR

Dynamic Multi-rater GMR

Inter-rater Variability
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Dynamic multi-rater GMR

3 raters

Valence Rating
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Incorporation of both forward and backward Kalman filters into multi-rater GMR to
account for the femporal dependencies in both directions.

Label distribution given by GMM instead of single Gaussian.

Measure to quantify uncertainty from predicted distribution (GMM).
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Gaussian Mixture Regression(GMR)

> GMR model

 Joint distribution of feature vectors and  * Training vectors are generated by concatenating
the feature vector and mean rating

1@ = P(x,y)

Valence Y
(mean rating)

1
—e— Frame 1
0.8 * Frame 2
0.6 *
0.4 ! :
|
0.2 |
|
|
0 1 1 1 1 | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Features X

> Incorporation of uncertainty

* Training vectors are generated by concatenating
the feature vector and individual annotation
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Gaussian Mixture Regression(GMR)
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Gaussian Mixture Regression(GMR)

> Plot of uncertainty of emotion predictions
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» Standard deviation of six raters correlates with the predicted uncertainty of emotion
> Limitations

* The assumption of Gaussianity over label distribution may not hold true

* GMR does not model temporal dependencies between frames
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Dynamic multi-rater GMR

* Adopting predicted GMM distribution directly

» Kalman filter is adopted to explore the temporal dependencies
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Dynamic multi-rater GMR

* Adopting predicted GMM distribution directly

» Kalman filter is adopted to explore the temporal dependencies

* Vector representation of GMM distributions is adopted by Kalman filter
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Dynamic multi-rater GMR

> Kalman filter

v, 1s treated as the observation of label distribution and s; is the underlying distribution
that depends on the long-term dynamics

s¢: underlying label d1str1but10n P(s¢|S¢-1)

—— ——

V,: noisy observation of s, ﬂ ﬂ

Vi1 Ut

st =Fs;_1 +w;_; (noisew;_;~N(0,Q))

v, =Hs;+r, (noiser;~N(0O,R))

During training phase, parameters of Kalman filters (F, Q ,H and R) are estimated where
the observations v; and the ground truth s; are known.

During test phase, Kalman filters are utilised to predict the label distribution §; based on the

GMR prediction v; and the prediction of previous frames S;_4
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Dynamic multi-rater GMR

> Forward and backward Kalman filter

P(s¢|s¢-1)
e Forward ——————1 @= )
Vi V¢
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e Backward & & |
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* Final label prediction $; = asffl + (1 — a)skF?
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Measures of Uncertainty

> Probabilistic uncertainty volume pyy

» Probabilistic uncertainty volume estimates the local variability of a distribution
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* Given threshold 8, PUV; for a broad GMM (high uncertainty in left side) is larger
than PUV, for a narrow GMM (low uncertainty in right side)
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System Evaluation

* System evaluation focuses on the comparison between predicted and underlying
label distributions

Predicted by system
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Evaluation Metrics

Predicted label distribution

A

Underlying label distribution
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* Underlying label distribution (GMM) is time-dependent and estimated in the label
space by 6 annotations
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Evaluation Metrics

Predicted label distribution Underlying label distribution

A

A

Probability

Probability

Y

Underlying label distribution is time-dependent and estimated in the label space

by 6 annotations

Probabilistic uncertainty volume PUV is estimated for the predicted and underlying
label distribution respectively for each frame

» Correlation coefficient (CC)

Pearson’s correlation coefficient between probabilistic uncertainty volume
estimated from the predicted and the underlying label distribution

* A higher CC indicates better predicted label distributions
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>

Evaluation Metrics

Predicted label distribution Underlying label distribution
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Underlying label distribution is time-dependent and estimated in the label space
by 6 annotations

KL divergence

KL divergence estimates the similarity between the predicted and the underlying
label distributions

* A smaller KL divergence indicates better predicted label distributions

*  Median and 25" and 75" percentiles of KL divergence over entire test dataset

are estimated (boxplot)
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» Training phase
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* Github: https://github.com/TingDang90/Dynamic-multi-rater-GMR
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Experimental Settings

> Experimental settings

» Database: RECOLA (6 annotations)

* Features: 5 functionals applied to 130 LLDs
* PCA : 40 dimensions

* Delays: 2s for arousal and 4s for valence

*  GMM mixture number: [2,4,8]

* Linear coefficient of Kalman filter: [0, 1] with a step increase of 0.1

* Baseline:
--- Multi-rater GMR system
1. CC between the PUV of predicted Gaussian and PUV of underlying label distribution

i1. KL between the predicted Gaussian and the underlying label distribution(GMM)
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Experimental Results

» CC between predicted and true puv
* CC between the PUV of the predicted and underlying label distributions (GMM)
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* Incorporating temporal dependencies benefits uncertainty prediction, especially for
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Experimental Results

> KL divergence between predicted and underlying label distributions

* KL between the predicted and underlying label distribution (GMM) is computed
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* The proposed system leads to more reliable and smoothed distribution prediction
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Conclusion

A dynamic multi-rater GMR to predict emotion uncertainty by considering the
temporal dependencies is proposed, which is achieved by applying Kalman
filters.

Probabilistic uncertainty volume is introduced as a measure to quantify
uncertainty of emotion predictions (GMM).

The statistics of KL divergence between predicted and underlying label
distributions indicate that incorporating temporal dependencies between frames
leads to a smoother change in the label distributions

Future work will focus on relaxing linearity assumption about the evolution of
emotion label distributions
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Predicted label distribution
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Thresholds of Probabilistic Uncertainty Volume

Underlying label distribution

Thresholds 6; are defined in terms of percentiles of all the probabilities calculated

by fitting the test features to the GMM models

 The optimal threshold 6; is determined experimentally based on the system
performance
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CC between PUV from predicted and underlying distributions

Optimal threshold 8; for arousal
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Smoothness of PUV from underlying label distribution
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KL divergence

Symmetric KL divergence is utilised, with a larger KL divergence indicating a greater
separation between them.

Specifically, a Monte-Carlo estimate of the symmetric KL divergence proposed in [11]
is utilised to quantify the separation between two distributions.

Py (x)
P, (x)

Ik, (Py, Pp) = dx + J P,(x)In Po (%) dx (3.1)

1
2 Lpl )i P, (x)

2
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Experimental Results

> KL divergence between predicted and underlying label distributions

| Aousal | Valence

- Proposed Baseline Proposed Baseline

VST 01439 16872 02085  1.8628
D 0818 72714 02044 11236

--- Baseline means the KL diverenge calculated between predicted and underlying
GMM distributions.

--- The proposed system leads to more reliable and smoothed distribution prediction
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Uncertainty Prediction using Kalman filters

1
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Uncertainty Prediction using Kalman filters

Uncertainty

1 1 1
2000 2500 3000 3500
Frame number

Figure. 25-75% quartile plotted as error bar, with 6 true annotations overlaid.

utterance 2 in dev set
Yellow: predicted GMM(ESN) ; Cyan: assumed ‘ground truth’; Green: predicted GMM(Kalman

filter)
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Left:

utterance 4 in dev set;
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Kalman filter
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CC between the standard deviation (SD) of predicted Gaussians and PUV (ground truth)
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