
Redundancy rate according to quantization level

An extreme case of quantization where only signs of each element
are stored, we were able to reduce 14.59% of the computations.

Motivation & Problems

ACCELERATING RECURRENT NEURAL NETWORK LANGUAGE MODEL BASED ONLINE SPEECH RECOGNITION SYSTEM

Authors: Kyungmin Lee, Chiyoun Park, Namhoon Kim, and Jaewon Lee / Affiliation: SR Research(former DMC R&D Center), Samsung Electronics, Seoul, Korea

RNNLMs do not require Markov assumptions as they can model word
histories of variable-length, and these virtues of them have helped improve
the performance of many ASR systems.
However, to our knowledge, they are not yet actively adopted in real-time
ASR systems due to their high computational complexities.

Proposed Two Methods

Architecture of Recurrent Neural Network

GRU based RNN – Compute intensive task

▲ Memory usage can go up to several megabytes in practice.
▼ The computational complexities of GRU computations are O(H × H) for a

hidden layer of size H.
Noise contrastive estimation – Memory intensive task

▲ The required computations are inner products between the GRU outputs
and NCE weights corresponding to the current word.

▼ NCE weight matrix of size H× V needs to be loaded into memory for
vocabularies of size V.
Maximum Entropy – Memory intensive task

▲ We employed a hash-based MaxEnt.
▼ This method requires the loading of a large hash table proportional to the

number of n-grams.

Precision Count Redundancy rate
(baseline) 103,904 0.00%
round-2 102,776 1.09%
round-1 102,776 1.09%

sign 88,749 14.59%

Results

The LM queries with same history as well as following words
are de-duplicated by applying a cache strategy at the start of
the rescoring procedure. After the de-duplication, the
embedding vectors corresponding to indices are retrieved by
using an “Index Table”. The RNNLM computations are then
performed with appropriate values in CPU memory. The
results of the calculations are converted to indices, cached,
and returned to graph traversals.

The current GRU hidden layer outputs computed
based on the previous GRU hidden layer outputs
(history vectors) which could be shared between
similar LM queries. Therefore, in order to reuse
the recomputed history vectors, we created
another cache for that vectors just before
computing RNNLM.
The number of unique computations is further
reduced by assuming that close history vectors
would result in similar GRU hidden layer outputs,
with negligible effect on the overall ASR results.

Baseline system – On-the-fly rescoring with cache

CPU-GPU Hybrid Deployment of RNNLM Computation

▼ Only the middle layer of the RNNLM
computations was deployed on the GPU side,
the information needs to be shared across
the two heterogeneous processor units very
frequently. As the number of data exchanges
increases, the decoding speed of the hybrid
ASR system inevitably decreases.
▲ We propose a method in which we reduce
the number of data copies between CPUs and
GPUs by concatenating the needed informa-
tion to one block per frame.

Quantization of history vectors

During the batching step, the history vectors and their next word embedding
vectors that are emitted for each frame are stored in a consecutive CPU mem-
ory block, and the whole data block is transferred to GPU memory at once. The
GRU outputs from the GPU are also copied back to the output layer computat-
ion in one data block.

Operation time for each RNNLM computation step(in secs)

The hidden layer takes 99% of the overall computation. The
computation is easily accelerated by GPUs. Thus we maximized the
GPU utilization through a frame-wise batching strategy. (10x faster
data transfer speed)

Processor
Data transfer Hidden

Layer

Output
Layer Unit Count Time

CPU - - - 6.23 0.04

GPU
LM Query 102,172 5.94 2.15 0.06

Frame 518 0.60 2.26 0.03

Performance on LibriSpeech’s test sets

The proposed quantization strategy shows 1.23x faster recognition
speed compared to the baseline system. With three GPUs, we
attained real-time speech recognition over all the test cases. The
fastest average recognition speed was 0.72 RTF.

