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An extreme case of quantization where only signs of each element 
are stored, we were able to reduce 14.59% of the computations. 

Motivation & Problems 

ACCELERATING RECURRENT NEURAL NETWORK LANGUAGE MODEL BASED ONLINE SPEECH RECOGNITION SYSTEM 
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RNNLMs do not require Markov assumptions as they can model word 
histories of variable-length, and these virtues of them have  helped improve 
the performance of many ASR systems. 
However, to our knowledge, they are not yet actively adopted in real-time 
ASR systems due to their high computational complexities. 

Proposed Two Methods 

Architecture of Recurrent Neural Network 

GRU based RNN – Compute intensive task 

▲ Memory usage can go up to several megabytes in practice. 
▼ The computational complexities of GRU computations are O(H × H) for a 

hidden layer of size H. 
Noise contrastive estimation – Memory intensive task 

▲ The required computations are inner products between the GRU outputs 
and NCE weights corresponding to the current word. 

▼ NCE weight matrix of size H× V needs to be loaded into memory for 
vocabularies of size V. 
Maximum Entropy – Memory intensive task 

▲  We employed a hash-based MaxEnt. 
▼  This method requires the loading of a large hash table proportional to the 

number of n-grams. 

Precision Count Redundancy rate 
(baseline) 103,904 0.00% 
round-2 102,776 1.09% 
round-1 102,776 1.09% 

sign 88,749 14.59% 

Results 

The LM queries with same history as well as following words 
are de-duplicated by applying a cache strategy at the start of 
the rescoring procedure. After the de-duplication, the 
embedding vectors corresponding to indices are retrieved by 
using an “Index Table”. The RNNLM computations are then 
performed with appropriate values in CPU memory. The 
results of the calculations are converted to indices, cached, 
and returned to graph traversals. 

The current GRU hidden layer outputs computed 
based on the previous GRU hidden layer outputs 
(history vectors) which could be shared between 
similar LM queries. Therefore, in order to reuse 
the  recomputed history vectors, we created 
another cache for that vectors just before 
computing RNNLM.  
The number of unique computations is further 
reduced by assuming that close history vectors 
would result in similar GRU hidden layer outputs, 
with negligible effect on the overall ASR results. 

Baseline system – On-the-fly rescoring with cache 

CPU-GPU Hybrid Deployment of RNNLM Computation 

▼  Only the middle layer of the RNNLM 
computations was deployed on the GPU side, 
the information needs to be shared across 
the two heterogeneous processor units very 
frequently. As the number of data exchanges 
increases, the  decoding speed of the hybrid 
ASR system inevitably decreases. 
▲ We propose a method in which we reduce 
the number of data copies between CPUs and 
GPUs by concatenating the needed informa-
tion to one block per frame. 

Quantization of history vectors 

During the batching step, the history vectors and their next word embedding 
vectors that are emitted for each frame are stored in a consecutive CPU mem-
ory block, and the whole data block is transferred to GPU memory at once. The 
GRU outputs from the GPU are also copied back to the output layer computat-
ion in one data block. 

Operation time for each RNNLM computation step(in secs) 

 
 
 
 
 
The hidden layer takes 99% of the overall computation. The 
computation is easily accelerated by GPUs. Thus we maximized the 
GPU utilization through a frame-wise batching strategy. (10x faster 
data transfer speed) 

Processor 
Data transfer Hidden 

Layer 

Output 
Layer Unit Count Time 

CPU - - - 6.23 0.04 

GPU 
LM Query 102,172 5.94 2.15 0.06 

Frame 518 0.60 2.26 0.03 

Performance on LibriSpeech’s test sets 

 

 

 

 

 

 

 
The proposed quantization strategy shows 1.23x faster recognition 
speed compared to the baseline system. With three GPUs, we 
attained real-time speech recognition over all the test cases. The 
fastest average recognition speed was  0.72 RTF. 


