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Affordable Healthcare Analytics in Internet of Things (IoT)Affordable Healthcare Analytics in Internet of Things (IoT)

• Cardiac problem is a serious issue : An estimated 17.7 million people died from CVDs 

in 2015, representing 31% of all global deaths.

• “Over three quarters of CVD deaths take place in low- and middle-income 

countries”

• IoT revolutionizing healthcare

• Low cost wearable sensors

• Early screening and detection

*http://www.who.int/mediacentre/factsheets/fs317/en/
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Which signal?

• Phonocardiogram/Heart Sound/PCG signals

• Transient sounds produced when heart valve opens and closes.

• Healthy adults have two normal heart sounds S1 (‘lub’) - S2 (‘dub’) in a beat.

• Pathological condition/Disease induces murmurs and other sounds.

https://physionet.org/challenge/2016/

• PCG signals prone to noise.

• Challenges

• Accurate diagnosable quality data 

collection

• Reliable Disease Prediction
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What we propose?

• RONUN is an automated, preventive cardiac management solution that uses 

smartphone or other wearable sensor-captured heart sound, PCG signal.

• Generates alerts by finding the pathological condition of the user.

Denoising

• Noisy PCG signal identification and 
rejection

Optimal 
Features

• Optimal feature selection through Hybrid 
approach

Classification

• Classification of clean PCG signal to 
determine the presence of cardiac 
abnormality.

RONUN
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Functional FlowFunctional Flow
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Glimpse of PCG Clean and Noisy Data
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 Use a representative template

 Find most probable segment length 𝐿𝑝

– Through density based clustering.

 Segmentize the signal based on heart beat

 Normalize each segment length to 𝐿𝑝

 Compute Dynamic Time warping (DTW)

distance of each PCG segment

 DTW distances of corrupt portions are more 

higher dissimilarity

 Accuracy  84.24%

Semi-supervised Learning Based Noise IdentificationSemi-supervised Learning Based Noise Identification
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Hybrid Feature Space OptimizationHybrid Feature Space Optimization

 Feature Selection and reduction [2]

– Improve Prediction performance

– Provide fast and cost-efficient models

– Better understanding of the underlying processes that generated data

 Methods

– Filter

– Wrapper

Features

+

Label

Multiple 

Feature

“subsets”

Predictor

Wrapper

Features

+

Label

Feature

“subset”
Predictor

Filter



11

Hybrid Feature Space OptimizationHybrid Feature Space Optimization

 Hybrid Feature Selection

Given a feature set of M instances 𝐹 = {f1, f2, f3, …… fN} consisting N features

1

2

3

.

.

.

M

f1 f2 f3 ……… fN f1 f2 . . … fK f1 f2. . fk

Diversity Criterion 

based 

Feature selection

Forward selection 

based 

performance 

maximization

FM WM

𝐾 ≤ 𝑁 𝑘 ≤ 𝐾 ≤ 𝑁
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FM : Diversifying Features FM : Diversifying Features 

 𝐽 different feature selection methods.

– For example, mRMR: 𝑅 =
1

|F|2
 𝑓𝑖,𝑓𝑗 𝐼 𝑓𝑖 , 𝑓𝑗 ; 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒, 𝐷 𝐹, 𝑐 =

1

|𝐹|
 𝑓𝑖 𝐼 𝑓𝑖 , 𝑐

𝑚𝑎𝑥𝐹 𝜙 𝐷, 𝑅 , 𝜙 = 𝐷 − 𝑅

 Obtain 𝐽 different ranks for each feature in the feature set.

 2-means clustering to get centroids 𝐶1
𝑖 , 𝐶2

𝑖 . (𝐶1 < 𝐶2) for 𝑖𝑡ℎ feature .

 Features are ordered in increasing order of their 𝐶1
𝑖 values ∀ 𝑖 = 1,2,3, …𝑁.

– Best feature is 𝑓𝑏𝑒𝑠𝑡 𝑖𝑓 𝐶1
𝑏𝑒𝑠𝑡 < 𝐶1

𝑖 ∀ 𝑖 = 1,2,3,4, …𝑁
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FM : Diversifying Features FM : Diversifying Features 

 Example:

– 4 features 𝑓1, 𝑓2, 𝑓3, 𝑓4
– K = 2

 𝐽 different feature selection methods.

– 7 diverse selection criteria {ICAP, JMI, DISR, mRMR, MIFS, CIFE, CMIM}

 Obtain 𝐽 different ranks for each feature in the feature set.

𝑓1 → 3,1,4,2,2,1,3
𝑓2 → 2,3,1,4,3,4,2
𝑓3 → 4,4,3,3,4,3,4
𝑓4 → 1,2,2,1,1,2,1

 2-means clustering to get centroids 𝐶1
𝑖 , 𝐶2

𝑖 . (𝐶1 < 𝐶2) for 𝑖𝑡ℎ feature .

– 𝐶1
1 = 2.63, 𝐶1

2= 2.59, 𝐶1
3= 3.87, 𝐶1

4 = 1.21

 Features are ordered in increasing order of their 𝐶1
𝑖 values ∀ 𝑖 = 1,2,3, …𝑁.

 Best feature is 𝑓𝑏𝑒𝑠𝑡 𝑖𝑓 𝐶1
𝑏𝑒𝑠𝑡 < 𝐶1

𝑖 ∀ 𝑖 = 1,2,3,4, …𝑁

– {𝑓4, 𝑓1}
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WM : Forward Selection Performance MaximizationWM : Forward Selection Performance Maximization

 Feature ranked from filter methods are given as input.

 Choose a performance metric. For example, accuracy, F1-score,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

 Select the feature if validation performance increases else drop the feature.
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Typical Features used for PCG classificationTypical Features used for PCG classification

 Time domain

 Mean, std of the RR intervals, Systole intervals, Diastole intervals

 Mean, std ratios of interval between systole and RR in each beat

 Mean absolute amplitude ratios between diastole period and S2 period in

each heart beat.

 Frequency Domain

 Skewness, Kurtosis of the FFT.

 Total Normalized power in different frequency bands.

 Wavelet domain

 ‘db3’ mother wavelet. 3 levels of decomposition

 Mean and standard deviation over S1, S2, Systole diastole intervals.
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Dataset Description [5]Dataset Description [5]

 Digital Stethoscope

 8 seconds to 5 minutes down-sampled at 2000 Hz

 3153 recordings

 2488 Normal

 665 Abnormal

 Variety

 9 heart sound databases collected independently.

 7 different research teams from 7 countries and 3 continents
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Performance with and without Noise RemovalPerformance with and without Noise Removal

 Increased abnormality detection
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Stability of the features selectedStability of the features selected

 Kuncheva’s consistency index

 The Consistency Index for two subsets 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑋, such that

|𝐴| = |𝐵| = 𝑘, where 0 < 𝑘 < |𝑋| = 𝑛, is

𝜔 𝐴, 𝐵 =
𝑟 −

𝑘2

𝑛

𝑘 −
𝑘2

𝑛

=
𝑟𝑛 − 𝑘2

𝑘(𝑛 − 𝑘)

𝑘: Cardianality of 𝐴 and 𝐵, 𝑟 ∶ 𝐴 ∩ 𝐵 , 𝑛 ∶Original number of features
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Stability of the features selectedStability of the features selected

 𝜔 ≥ 0.5 ensures stability.
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Ronun Abnormality Detection PerformanceRonun Abnormality Detection Performance
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Concluding remarksConcluding remarks

 Automated cardiovascular disease detection based on PCG signals.

 Appropriately pre-processed PCG signal would return higher

clinical utility

 Hybrid feature space optimization
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