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Diffraction Imaging
Why Ptychography?
» Problems of focus:
» Short distance imaging - microscopy.

» Long distance imaging - surveillance, astronomical imaging.

Figure: Microscopic imaging setup.

Image source: http:/zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html
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Resolution limit

Figure: Resolving two point sources.

Diffraction SpOt size distance of object from lens

aperture of imaging lens

Image source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html
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Fourier Ptychography Setup

Short-distance imaging

[Tian, Li, Ramachandran, Waller, '14]

» Diffraction information is collected from overlapping iluminated
regions on an object, effectively giving large synthetic aperture.
» Optical sensors can only detect magnitude.

» Phase information is lost. = Requires a reconstruction
algorithm to estimate phase!



Fourier Ptychography Setup

Long-distance imaging

Figure: Object is imaged by using an "overlapping" camera array, generating
large synthetic aperture [Holloway et. al, ’16].
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Why Ptychography?

» Achieves higher spatial resolution as compared to
conventional optical setups.

» At the cost of:
» Higher number of measurements (sample complexity).
» Added post-processing time for the recovery algorithm
(running time complexity).
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Mathematical Model
Standard setup

» Signal (vectorized image frame):

xecC"

» (Linear) optical system of i camera/LED prior to the sensor
measurement step:

A,‘ C"— C"
» Acquired measurement of i” camera/LED from an array grid
ie{1,2,...N}:
yi = |Ai(X)] €R"
Equivalently,

y=[AX)|=[y{ ...y ...yl
where A=[A] ... A" ... Ax"],

andy e R"™ and A : C" — C™, with m = nN > n.
Yy



Flow of optical operations
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Figure: Sampling procedure, using operator .4; in conventional Fourier
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ptychographic setups. Camera index is denoted by i = [N].



Flow of optical operations

Ai X F = Pio —~ F1—Y;

g 1]y

A~

Al yirf F | Pio - F1— X,

Figure: Sampling procedure, using operator .4; in conventional Fourier
ptychographic setups. Camera index is denoted by i = [N].
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Flow of optical operations

Ai X~ F ~ Pio —~ F 1Yy

Vi~ [V

A~

Al yirf F | Pio - F1— X,

Figure: Sampling procedure, using operator .4; in conventional Fourier
ptychographic setups. Camera index is denoted by i = [N].

Ai=F "PioF and Al =F '"PioF

» P;is a pupil mask (bandpass filter),

» Pj’s cover different parts of the Fourier domain image (o is
Hadamard product).
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Standard phase retrieval problem:

Observation Model

Model: x € C"
Observations: Phaseless linear measurements y

y = |A(X)], A:C"—=C™ m>n
Goal: Recover x fromy.

(Statistical)

How many measurements do we need for stable recovery?

(Computational)

How quickly can we perform the recovery?
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What is known

y = |A(X)|, A:R"SR™ m>n

Goal: Recover x from y.

Solution methodology involves estimating phase and signal
information in alternating steps [Gerschberg-Saxton '72, Fienup '78].

Challenges:

» High sample complexity (O (n) measurements; can be huge if n
is large).

» High running time; algorithms are not scalable.
Solution:

» Utilize inherent structure in the signal! Most images to be
acquired have underlying (structured) sparsity!
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Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover s-sparse signal x from magnitude-only
ptychographic measurements y.
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Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover s-sparse signal x from magnitude-only
ptychographic measurements y.

Given:
y = |A(X)], A:R" 5 R™ m< nN

Recover: x, such that ||x|[, < s.

Is sparsity the only prior that can be used?
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Modeling Sparsity

» Block/group sparsity (this paper).
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» Tree sparsity.
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Our contributions
Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

1. Suitable sub-sampling strategies for Fourier ptychography.

» Reduces the number of samples acquired for image
reconstruction.

2. New (structured) sparsity-based algorithms for solving the
Fourier ptychographic phase retrieval problem.
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Contributions (I) : Sub-sampling Strategies
Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

A/‘ X F —»'Pl-o —>‘F—1 _>._y'\l

Vi~ [ =Y

v+ B

Figure: Sampling operator .4;. The green box is extra subsampling step.

Ai= M F'PioF and Al = F'PjoFM,,

» The sub-sampling masks M; resembles the operation of an
identity, in the conventional setup (i.e. all measurements are
retained).
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Contributions (I) : Sub-sampling Strategies

Uniform Random Pixel Patterns

Figure: N = 9 camera grid.

o
St
A

» Masking elements of M, are

picked according to
independent standard ‘
uniform random variables u/f.

Total of m= f x (nN)
measurements are retained,
from all N cameras, where f
denotes the fraction of
samples (or pixels).

For an input vector v € C”,
the sub-sampling mask
operates as

0 u>f,
. i
Vi ujgf.

M;(v); = {



Contributions (I) : Sub-sampling Strategies

Uniform Random Camera Patterns

» Turn some cameras “on" or
“Off".

» Masking elements of M; are
picked up according to
continuous standard uniform
variables u;.

» For a vector input v e C”,
the sub-sampling mask,

0 U,'>f,
v up < f.

Figure: N = 9 camera grid.
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Contributions (Il) : Sparse signal and phase recovery

The signal estimate can be posed as the solution to the
non-convex optimization problem:

meruA N —yil2, st xems,

» X is the signal in the sparse domain,

» 9L denotes the model of the signal, consisting of a set of
s-sparse signals with uniform block length b € Z.

» A is modified measurement operator, accounts for the
domain transformation and sub-sampling mask.

*For the standard sparse model b = 1; for the block sparse model b > 1.
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Contributions (II) : CoOPRAM Framework

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with
Alternating Minimization) framework [Jagatap, Hegde ’17]:
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Contributions (II) : CoOPRAM Framework

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with
Alternating Minimization) framework [Jagatap, Hegde ’17]:

Initialize x° = \/m

Fort=0,...,T:

» Phase estimation: P! = diag (sign (A(x"))).

> Signal estimation: x' = argmin,, coys [ A(X') = Py][,.
(Model-based) CoPRAM for Fourier Ptychography.

Key features:

» Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to
recover (structured) sparse signal estimate x!
— reduced sample complexity.

» Initialization strategy for faster convergence.

» No tuning parameters!
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Experimental validation
Ground truth
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Figure: (a) Resolution chart, used as ground truth (b) simulated block
sparse image, used as ground truth for experimental analysis.
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Simulation Results

Random pixel sub- sampling
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(b) (d)
Ground truth Initial center, AltMin, CoPRAM,
SSIM=0.3517 SSIM=0.3369 SSIM=0.8740

(a) (b) (c) (d)
Ground truth Initial center, CoPRAM, Block CoPRAM,
SSIM=0.9969  SSIM=0.99995 SSIM=0.99998

Figure: Sub-sampling ratio f = m/nN = 0.3, assumed sparsity
s = 0.25n (top) and s = 0.1n (bottom) both in spatial domain.
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Simulation results

Phase transitions
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Figure: Variation of SSIM with sub-sampling ratio f = m/nN, with
(spatial) sparsity s = 0.25n, (block size b = 4 x 4 for Block CoPRAM),
for the Resolution Chart image.
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Simulation Results

Random camera sub-sampling
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Figure: (a) Ground truth (b) center image, reconstruction from 50% camera
measurements using (c) AltMin (d) CoPRAM, assuming sparsity s = 0.25nin

spatial domain.
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Summary

Our contributions:

» Alternating minimization gives superior performance for phase
recovery in comparison to algorithms with/without sparsity
modeling.
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Summary

Our contributions:

» Alternating minimization gives superior performance for phase
recovery in comparison to algorithms with/without sparsity
modeling.

» Requires no tuning parameters except for an estimate of sparsity
parameters.

» First algorithm to consider structured models of sparsity for the
Fourier Ptychographic setup.

Open questions:

» Theoretical guarantees on convergence.
» Extension to other models of sparsity.
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Questions?

Interested in knowing more?
Check our project website:

https://gaurijagatap.github.io/Sparse-image-super-resolution/
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