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Tüske — Human Language Technology and Pattern Recognition
RWTH Aachen University — 04. 18, 2018



Introduction

Before the recent advance of deep neural network in acoustic modeling (AM):
• Manually designed feature extraction methods are based on:

– Physiology, [von Békésy, 1960], psychoacoustics [Fletcher and Munson, 1933],
trial-and-error [Furui, 1981]

• MFCC [Davis and Mermelstein, 1980], PLP [Hermansky, 1990], GT [Schlüter et al., 2007].

Current trend in neural network based AM:
• Learn the complete feature extraction from data, as part of the AM.

– Single channel: [Palaz et al., 2013, Tüske et al., 2014]
[Golik et al., 2015, Zhu et al., 2016, Ghahremani et al., 2016].

– Multi-channel, incl. beamforming: [Hoshen et al., 2015, Li et al., 2016].

• Usually: efficient modeling of direct waveform needs large amount of data.
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Introduction

State-of-the-art direct waveform AM

Similar to standard features:
• Starts with time-freq. (TF) decomposition by 1-D convolution, like STFT or Gammatone filters.

yk ,t =

NTF−1∑
τ=0

st+τ−NTF+1 · hk ,τ (1)

– st: input signal, sampled at 16kHz.

– yk ,t: optionally sub-sampled filter-output.

– hk ,t: mirrored FIR filter impulse response, NTF = 512 = 32ms@16kHz .

• Followed by envelope extraction

– Rectification, low-pass filtering, and sub-sampling:

- Non-parametric: max [Hoshen et al., 2015], average [Sainath et al., 2015],
p-norm [Ghahremani et al., 2016] pooling.

- Non-overlapping stride: sub-sampling at a single fixed ∼10ms rate.

4 of 21 AM of waveform based on multi-resolution, NN sig. proc.
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Introduction

Issue:
• Learned TF filters have varying bandwidth

• Estimated bandwidth vs. center frequency [Tüske et al., 2014]:
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• Fix rate subsampling might lead to under-sampling of broader band-pass filters, non-recoverable.
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Introduction

In this study:
• Generalizing the envelop extractor/down-sampling block.

– Making it trainable.

– See also network-in-network approach of [Ghahremani et al., 2016]

• Allowing the network to learn multi-resolution spectral representation.

– See also multi-scale max-pooling approach of [Zhu et al., 2016].
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Towards multi-resolution NN signal processing

Parametrized envelope extraction:

• By trainable FIR low-pass filters.

xi ,k ,t
FIR

= f2

(
NENV−1∑
τ=0

f1 (yk ,t+∆tTF ·τ−NENV+1) · li ,τ

)
(2)

– f1(yk ,t): rectified TF filter output subsampled at ∆tTF = 10 = 0.625ms@16khz step,
(contains very fine time structure, fits for TF filter with up to 800Hz bandwidth)

– f2: incorporates additional signal processing steps, e.g. root or logarithmic compression.

– li ,t: trainable low-pass filter, NENV = 16..160, up to 100ms (long).

– xi ,k ,t evaluated at ∆tENV = 16 · 10, 10ms@16kHz rate.

• 2nd level of 1-D convolution.

• Parameters are shared in time and between the TF filters.

• Although output sampled at fixed 10ms rate, the structure allows multi-resolution processing.
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Towards multi-resolution NN signal processing

The proposed structure allows:
• The learning of multi-resolution processing of critical bands, e.g.:

– E.g.: assuming 5 envelope filters, i = 1..5.

– Access to both fast and low rate sampled critical band.

– Localization, shifting the ,,faster” low-pass filter within the analysis window.
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• Wavelet-like processing:

– Exhaustive combination of envelope processing and TF filters, non-orthonormal basis.

– Orthonormal sub-space can be selected from xi ,k ,t.

– We let the NN decide which elements of xi ,k ,t contain useful information.
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Experimental Setup

• Models evaluated on an English broadcast news and conversation ASR task, reporting WER.

• Training data consisted of 250 hours of speech, 10% selected for cross-validation.

• Dev. and eval sets contain 3 hours of speech.

• Back-end (BE): a hybrid 12-layer feed-forward ReLU MLP, 2000 nodes per layer.

– 17-frame window.

– 512-dim. low-rank factorized first layer.

– Dimension of Xt is up to 150x20x17 = 51000.
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extraction

windowing

front-end back-end

:

• Models are trained using:

– Cross-entropy, SGD, momentum, L2, and discriminative pre-training.
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Experimental Results

Comparison of envelope filter types

• 50 TF filters, single envelope filter.
• f1(.) = Abs(.), f2(.) = 2.5

√
Abs(.)

li ,t NENV
WER

type dev eval

max
16 14.4 19.9
25 14.3 19.8
40 14.4 19.7

FIR 40 14.1 19.8

Gammatone 13.5 18.4

time-signal DNN 15.1 20.5

• Overlapping (NENV >16) max pooling performs slightly better.
• Trainable element is as effective as max pooling.
• More (+100) TF filters lead to further modest improvement: 0.4% on eval set.
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Experimental Results

Effect of envelope detector (li ,t) size, and non-linearities:

#env. filters NENV f1 f2 #param*
WER

(li ,t) sample ms dev eval

05 040 025
Abs(.)

-

7.5M

14.2 19.6

Abs(.) 14.2 19.3
2.5
√

Abs(.) 13.7 18.7
2.5
√

Abs(.) Abs(.) 13.8 18.7

10 080 050 Abs(.)
Abs(.)

14M
13.9 19.0

2.5
√

Abs(.) 13.9 19.0

20 160 100 Abs(.)
Abs(.)

27M
14.3 19.3

2.5
√

Abs(.) 14.4 19.6

Gammatone 1.7M 13.5 18.4

*up to 1st back-end layer

• Using multiple envelope filters is closing the WER gap to Gammatone.

• The root compression seems to be important only if NENV <10.
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Experimental Results

Effect of the segment-wise mean-and-variance normalization:

• Freezing the front-end, and retraining the back-end model on the normalized features.

front-end normalization WER [%]
type dim. mean variance dev eval

NN 512
13.7 18.7

× 13.7 18.6
× × 13.5 18.5

GT
13.5 18.4

70x17 × 13.1 17.8
× × 13.2 17.9

• Segment level normalization improves NN front-end, but less effective than with Gammatone.

• Increased performance gap between the Gammatone (GT) and direct waveform models.
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Weight analysis

Analyzing the time-frequency decomposition layer (hk,t).
• Plotting time-frequency patches in the 32ms analysis window (operates at 0.625ms shift).

• Estimating center freq., pulse-, and bandwidth for each (150) band-pass.

• The grayscale intensity is proportional to patch surface.
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• Multi-resolution: each frequency band is covered by various band-pass filters.

13 of 21 AM of waveform based on multi-resolution, NN sig. proc.
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Weight analysis

Analyzing the envelope extractor layer (li ,t):
• Examples of li ,t and below its Bode magnitude plot:
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• Surprisingly, besides low-pass also many band-pass filters: modulation spectrum.
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Weight analysis

Analyzing the envelope extractor layer:
• li ,t can be split to low-pass (LP) and modulation filters.

• Filters can be sorted by the cutoff or center frequencies.

• Plotting amplitude spectrum of the reordered li ,t .
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• Multiple low-pass filter, according to variable bandwidth of TF filters.
• Modulation filter frequencies are clearly below 150Hz.

– Research studies on modulation spectrum suggest only 20-40Hz.

15 of 21 AM of waveform based on multi-resolution, NN sig. proc.
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Weight analysis

Comparison of standard Gammatone and NN spectrograms (CRBE):
to answer that question an
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• resolution: 10ms
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• f1(yk ,t) resolution: 0.625ms

NN spectrograms after low-pass (LP) and modulation (MOD) filtering (xi,k,t):
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• resolution: 10ms
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Weight analysis

Analyzing the first layer of the back-end:
• Xt contains 17 frames of multi-resolution spectra.

• Selecting weights belonging to a specific spectral representation.
• Plotting in 2D: filter frequency and position in the time-window.

– GT front-end: 50x17 patches.

– NN front-end: 150x17, using estimated center frequencies of TF filter.
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• Frequency selectors, Gabor patches, delta features, complex CRBE patterns.
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Conclusions

• Direct waveform model could match the performance of optimized cepstral features,
using less than 250 hours of speech.

• Still, slight gap between hand-crafted and data-driven features after segment-level normalization.

• The data-driven front-end strongly depends on the back-end, less portable.

• NN based signal processing prefers to learn modulation spectral representation.

– For higher resolution in modulation frequency, the envelop filter response should be
up to 1 sec long.

• Weight analysis reveals patterns similar to activations in the auditory cortex.
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Thank you for your attention

Any questions?



Conclusions
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