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Introduction

Before the recent advance of deep neural network in acoustic modeling (AM):
« Manually designed feature extraction methods are based on:
— Physiology, [von Békésy, 1960], psychoacoustics [Fletcher and Munson, 1933],
trial-and-error [Furui, 1981]

« MFCC [Davis and Mermelstein, 1980], PLP [Hermansky, 1990], GT [Schliiter et al., 2007].

Current trend in neural network based AM:
« Learn the complete feature extraction from data, as part of the AM.

— Single channel: [Palaz et al., 2013, Tiiske et al., 2014]
[Golik et al., 2015, Zhu et al., 2016, Ghahremani et al., 2016].

— Multi-channel, incl. beamforming: [Hoshen et al., 2015, Li et al., 2016].

o Usually: efficient modeling of direct waveform needs large amount of data.
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Introduction

State-of-the-art direct waveform AM

Similar to standard features:
- Starts with time-freq. (TF) decomposition by 1-D convolution, like STFT or Gammatone filters.

Ntg—1
Vit = E St+r—Nrp+1 - Nicr (1)

7=0

— s;: input signal, sampled at 16kHz.
— Yk.t: optionally sub-sampled filter-output.
— hi¢: mirrored FIR filter impulse response, Ng = 512 = 32msQ16kH:z.

« Followed by envelope extraction
— Rectification, low-pass filtering, and sub-sampling:

- Non-parametric: max [Hoshen et al., 2015], average [Sainath et al., 2015],
p-norm [Ghahremani et al., 2016] pooling.

- Non-overlapping stride: sub-sampling at a single fixed ~10ms rate.
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Introduction

Issue:
« Learned TF filters have varying bandwidth
» Estimated bandwidth vs. center frequency [Tiske et al., 2014]:
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« Fix rate subsampling might lead to under-sampling of broader band-pass filters, non-recoverable.
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Introduction

In this study:
« Generalizing the envelop extractor/down-sampling block.

— Making it trainable.
— See also network-in-network approach of [Ghahremani et al., 2016]

« Allowing the network to learn multi-resolution spectral representation.

— See also multi-scale max-pooling approach of [Zhu et al., 2016].
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Towards multi-resolution NN signal processing

Parametrized envelope extraction:

- By trainable FIR low-pass filters.

Nenv—1

Xi k.t = f Z fi (yk,t+AtTF~T—NENv+1) : /i,T (2)
7=0

— fi(yk.): rectified TF filter output subsampled at Atrr = 10 = 0.625ms@16khz step,
(contains very fine time structure, fits for TF filter with up to 800Hz bandwidth)

— f: incorporates additional signal processing steps, e.g. root or logarithmic compression.
— I;+: trainable low-pass filter, Ngyy = 16..160, up to 100ms (long).
— X;j .+ evaluated at Atgyy = 16 - 10, 10msQ@16kHz rate.

« 279 Jevel of 1-D convolution.
« Parameters are shared in time and between the TF filters.

« Although output sampled at fixed 10ms rate, the structure allows multi-resolution processing.
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Towards multi-resolution NN signal processing

The proposed structure allows:
« The learning of multi-resolution processing of critical bands, e.g.:

— E.g.: assuming 5 envelope filters, i = 1..5.
— Access to both fast and low rate sampled critical band.
— Localization, shifting the ,,faster” low-pass filter within the analysis window.

1,t 2t 3t 4t 5.t
1 1 1 1 1
0 0 0 0 0
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
t [ms]

« Wavelet-like processing:
— Exhaustive combination of envelope processing and TF filters, non-orthonormal basis.
— Orthonormal sub-space can be selected from x; ;.
— We let the NN decide which elements of x; x; contain useful information.

8 of 21 AM of waveform based on multi-resolution, NN sig. proc.
Tiiske — Human Language Technology and Pattern Recognition @ ‘ Rm

RWTH Aachen University — 04. 18, 2018



Experimental Setup

« Models evaluated on an English broadcast news and conversation ASR task, reporting WER.
« Training data consisted of 250 hours of speech, 10% selected for cross-validation.

« Dev. and eval sets contain 3 hours of speech.

« Back-end (BE): a hybrid 12-layer feed-forward ReLU MLP, 2000 nodes per layer.
— 17-frame window.
— 512-dim. low-rank factorized first layer.
— Dimension of X; is up to 150x20x17 = 51000.

front-end

back-end
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« Models are trained using:

— Cross-entropy, SGD, momentum, L2, and discriminative pre-training.
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Experimental Results

Comparison of envelope filter types

« 50 TF filters, single envelope filter.

« f1(.) = Abs(.), f(.) = */Abs(.)

i WER

type Nenv dev | eval

16 14.4119.9
max 25 14.3/19.8
40 14.4|19.7
FIR 40 14.1119.8

Gammatone [13.5/184
time-signal DNN | 15.1|20.5

« Overlapping (Ngny >16) max pooling performs slightly better.
« Trainable element is as effective as max pooling.
« More (+100) TF filters lead to further modest improvement: 0.4% on eval set.
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Experimental Results

Effect of envelope detector (/; ;) size, and non-linearities:

#env. filters Neny « WER
(/i +) sample | ms g f #param dev | eval
- 14.2 119.6
Abs(.) Abs(.) 1421193
5 40 25 7.5M
23/ Abs(.) 13.7 | 18.7
29/ Abs(.) | Abs(.) 13.818.7
Abs(. 13.9119.0
10 80 50| Abs(.) 2_\5//4[55)(-) 14M 139119.0
Abs(. 14.3119.3
20 160 |100| Abs(.) 2'{’//\155)(.) 27TM 1221196
Gammatone 1.7M 135|184
*up to 1st back-end layer
« Using multiple envelope filters is closing the WER gap to Gammatone.
 The root compression seems to be important only if Ngny <10.
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Experimental Results

Effect of the segment-wise mean-and-variance normalization:

« Freezing the front-end, and retraining the back-end model on the normalized features.

front-end | normalization | WER [%]

type| dim. | mean |variance| dev | eval
13.7]18.7

NN | 512 X 13.7]18.6
X X 13.5]18.5

13.5/18.4

GT |70x17| X 13.1/17.8
X X 13.2117.9

« Segment level normalization improves NN front-end, but less effective than with Gammatone.

« Increased performance gap between the Gammatone (GT) and direct waveform models.
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Weight analysis

Analyzing the time-frequency decomposition layer (hy ;).
« Plotting time-frequency patches in the 32ms analysis window (operates at 0.625ms shift).
- Estimating center freq., pulse-, and bandwidth for each (150) band-pass.
« The grayscale intensity is proportional to patch surface.
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« Multi-resolution: each frequency band is covered by various band-pass filters.
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Weight analysis

Analyzing the envelope extractor layer (/; ;):

- Examples of /; + and below its Bode magnitude plot:
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« Surprisingly, besides low-pass also many band-pass filters: modulation spectrum.
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Weight analysis

Analyzing the envelope extractor layer:
e I; + can be split to low-pass (LP) and modulation filters.
« Filters can be sorted by the cutoff or center frequencies.

« Plotting amplitude spectrum of the reordered /; ;.

300

modulation

[index]

 Multiple low-pass filter, according to variable bandwidth of TF filters.
« Modulation filter frequencies are clearly below 150Hz.

— Research studies on modulation spectrum suggest only 20-40Hz.
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Weight analysis

Comparison of standard Gammatone and NN spectrograms (CRBE):
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« resolution: 10ms e fi(yk.t) resolution: 0.625ms

NN spectrograms after low-pass (LP) and modulation (MOD) filtering (x;k+):

NN MOD
CRBE

time [sec]

time [sec]

e resolution: 10ms e resolution: 10ms

16 of 21 AM of waveform based on multi-resolution, NN sig. proc.

Tiske — Human Language Technology and Pattern Recognition @ Rm
RWTH Aachen University — 04. 18, 2018



Weight analysis

Analyzing the first layer of the back-end:

« X; contains 17 frames of multi-resolution spectra.
« Selecting weights belonging to a specific spectral representation.
« Plotting in 2D: filter frequency and position in the time-window.

— GT front-end: 50x17 patches.
— NN front-end: 150x17, using estimated center frequencies of TF filter.
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« Frequency selectors, Gabor patches, delta features, complex CRBE patterns.
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Conclusions

« Direct waveform model could match the performance of optimized cepstral features,
using less than 250 hours of speech.

« Still, slight gap between hand-crafted and data-driven features after segment-level normalization.

« The data-driven front-end strongly depends on the back-end, less portable.

« NN based signal processing prefers to learn modulation spectral representation.

— For higher resolution in modulation frequency, the envelop filter response should be
up to 1 sec long.

« Weight analysis reveals patterns similar to activations in the auditory cortex.
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Thank you for your attention

Any questions?
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Conclusions
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