STEALTHY CONTROL SIGNAL ATTACKS IN SCALAR LQG SYSTEMS

Ruochi Zhang, Parv Venkitasubramaniam

December 14, 2015

Electrical and Computer Engineering Lehigh University, USA {ruz614,parv.v}@lehigh.edu

INTRODUCTION

Cyber-physical systems

Cyber-physical systems: structure

Cyber-physical systems: security issues

• Security vulnerabilities in cyber communication

INTRODUCTION: FALSE DATA INJECTION

• False data injection

False data injection

- wireless sensor networks
- smart grids
- computer systems

INTRODUCTION: LQG CONTROL SYSTEMS

• Linear-quadratic-Gaussian (LQG) control systems

- H. Fawzi *et. al.* 2011, "Secure state-estimation for dynamical systems under active adversaries" : LQG systems data injection attacks, resistance to specific detection schemes
- C. Bai *et. al.* 2014, "On kalman filtering in the presence of a compromised sensor: Fundamental performance bounds":

Infinite horizon stationary LQG systems with the objective of increasing the estimation error of the supporting Kalman filter

PROBLEM FORMULATION

LQG SYSTEM MODEL

Figure 1: Single-input single-output finite horizon LQG system.

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(0, \sigma_k^2)$$

Goal of the controller: minimize the quadratic cost

$$J = \mathbb{E}\left\{Q_{N}\mathbf{x}_{N}^{2} + \sum_{k=0}^{N-1}(Q_{k}\mathbf{x}_{k}^{2} + R_{k}\mathbf{u}_{k}^{2})\right\}$$

THE POLICY OF THE CONTROLLER

Optimal input u_k^* : linear function of state x_k

$$\mathbf{u}_k^* = L_k \mathbf{x}_k$$

 L_k , F_k , G_k are given recursively by

$$F_{k} = Q_{k} + F_{k+1}A_{k}^{2} - \frac{F_{k+1}^{2}A_{k}^{2}B_{k}^{2}}{R_{k} + F_{k+1}B_{k}^{2}}$$

$$G_{k} = R_{k} + F_{k+1}B_{k}^{2}$$

$$L_{k} = -\frac{F_{k+1}A_{k}B_{k}}{R_{k} + F_{k+1}B_{k}^{2}}$$

$$F_{N} = Q_{N}$$

$$G_{N} = 0$$

FALSE INPUT INJECTION

Figure 2: The corrupted LQG control system.

$$\widetilde{\mathbf{x}}_{k+1} = A_k \widetilde{\mathbf{x}}_k + B_k \widetilde{\mathbf{u}}_k + \mathbf{w}_k, \qquad k = 0, 1, \cdots, N-1$$

The attacker's goal: maximize

$$\widetilde{J}(\pi) = \mathbb{E}\left\{Q_N \widetilde{\mathbf{x}}_N^2 + \sum_{k=0}^{N-1} (Q_k \widetilde{\mathbf{x}}_k^2 + R_k \widetilde{\mathbf{u}}_k^2)\right\}$$

- Infinite power?
- Need constraint on stealthiness (stealth)

KULLBACK-LEIBLER DIVERGENCE

Definition: Kullback-Leibler divergence

Let x_1^k and y_1^k be to random sequences with probability density functions (p.d.f.) $f_{x_1^k}$ and $f_{y_1^k}$, respectively. If $f_{y_1^k}(\xi_1^k) = 0$ implies $f_{x_1^k}(\xi_1^k) = 0$ for all $\xi_1^k \in \mathbb{R}^k$,

$$D(\mathbf{x}_1^k || \mathbf{y}_1^k) := \int_{\{\xi_1^k | f_{\mathbf{x}_1^k}(\xi_1^k) > 0\}} \log \frac{f_{\mathbf{x}_1^k}(\xi_1^k)}{f_{\mathbf{y}_1^k}(\xi_1^k)} f_{\mathbf{x}_1^k}(\xi_1^k) \mathrm{d}\xi_1^k$$

- Measure of statistical deviation
- Assume: controller knows the attack policy

Attacker's reward:

$$S(\pi) = \widetilde{J}(\pi) - J$$

Attacker's stealthiness:

$$D(\pi) = D(\widetilde{\mathbf{x}}_1^N || \mathbf{x}_1^N)$$

The problem

Given $\delta > 0$, find the optimal policy π^* that

minimize $D(\pi)$, subject to $S(\pi) \ge \delta$

MAIN RESULTS

The optimal attack is

$$\widetilde{\mathbf{u}}_k = \mathbf{u}_k + \widetilde{\mathbf{v}}_k$$

- The attacker adds noises into inputs at each step.
- Zero-mean, Gaussian, and independent of system dynamics.

Theorem (Optimal Attack)

The optimal attack subject to $S(\pi) \ge \delta$ is given by

$$\widetilde{\mathbf{v}}_k := \widetilde{\mathbf{u}}_k - \mathbf{u}_k \sim \mathcal{N}(0, \frac{\delta_k}{G_k})$$

independent of the system dynamics at every step. The δ_k is given by

$$\delta_k = \frac{1}{c_k - \theta} - \frac{1}{c_k}$$

where $c_k = \frac{B_k^2}{\sigma_k^2 G_k}$, and $0 < \theta < \min_{0 \le k \le N-1} c_k$ is a constant such that

$$\sum_{k=0}^{N-1} \frac{1}{c_k - \theta} - \sum_{k=0}^{N-1} \frac{1}{c_k} = \delta$$

Stationary system: if $c_k = \frac{B_k^2}{\sigma_k^2 G_k} = c$ for every k, the optimal attack will be

$$\widetilde{\mathbf{v}}_k \sim \mathcal{N}(0, \frac{\delta}{NG_k})$$

ILLUSTRATION

Figure 3: Variance of optimal attack \tilde{v}_k in a simple LQG system. N = 5, $Q_k = 1$, $R_k = 0$, $A_k = 1$, $B_k = 1$, and $\sigma_k^2 = k$ for every k.

OPTIMAL TRADEOFF

Figure 4: Kullback-Leibler divergence vs reward constraint for constant parameter LQG systems with different noise levels. $Q_k = 1, R_k = 0, A_k = 1, \text{ and } B_k = 1$

PROOF OUTLINE

PROOF OUTLINE: SINGLE-STEP PROBLEM

Single-step problem:

$$\mathbf{x}_1 = A_0 \mathbf{x}_0 + B_0 \mathbf{u}_0 + \mathbf{w}_0$$
$$\widetilde{\mathbf{x}}_1 = A_0 \mathbf{x}_0 + B_0 \mathbf{u}_0 + B_0 \widetilde{\mathbf{v}}_0 + \mathbf{w}_0$$

KL Divergence and Reward:

$$D(\widetilde{\mathbf{x}}_1 || \mathbf{x}_1) = D(B_0 \widetilde{\mathbf{v}}_0 + \mathbf{w}_0 || \mathbf{w}_0)$$
$$S(\pi) = G_0 \mathbb{E}\{\widetilde{\mathbf{v}}_0^2\}$$

Goal:

minimize $D(B_0 \tilde{v}_0 + w_0 || w_0)$, subject to $\mathbb{E}{\{\tilde{v}_0^2\}} \ge \delta/G_0$

$$D(B_0 \widetilde{\mathbf{v}}_0 + \mathbf{w}_0 || \mathbf{w}_0) = \frac{1}{2} \log(2\pi e \sigma_0^2) + \frac{B_0^2 \mathbb{E}\{\widetilde{\mathbf{v}}_0^2\}}{2\sigma_0^2} - h(B_0 \widetilde{\mathbf{v}}_0 + \mathbf{w}_0)$$

maximum entropy theorem

• $\widetilde{v}_0 \sim \mathcal{N}(0, \frac{\delta}{G_0})$ is optimal

The reward of a policy π can be expressed as sum of single step rewards,

$$S(\pi) = \sum_{k=0}^{N-1} S_k(\pi)$$

where the single step reward S_k is given by

$$S_k(\pi) = G_k \mathbb{E}\{\widetilde{\mathbf{v}}_k^2\}, \qquad k = 0, 1, \cdots, N-1$$

Similarly, the KLD of a policy π can be expressed as sum of single step KLDs,

$$D(\pi) = \sum_{k=0}^{N-1} D_k(\pi)$$

where $D_k(\pi)$ is the single step KLD

$$D_0(\pi) = D(\widetilde{\mathbf{x}}_1 || \mathbf{x}_1)$$

$$D_k(\pi) = \int f_{\widetilde{\mathbf{x}}_1^k}(x_1^k) D(\widetilde{\mathbf{x}}_{k+1} || \mathbf{x}_{k+1} | x_1^k) \mathrm{d} x_1^k,$$

$$k = 1, 2, \cdots, N-1$$

Divide total reward constraint into stepwise:

$$\delta = \sum_{k=0}^{N-1} \delta_k, \qquad \delta_k \ge 0$$

• For each k, solve a single-step problem

Stepwise optimization

Given $\delta_k > 0$, find the optimal policy π^* that

minimize $D_k(\pi)$, subject to $S_k(\pi) \ge \delta_k$

Memoryless

• $\widetilde{v}_k \sim \mathcal{N}(0, \frac{\delta_k}{G_k})$ is optimal with single-step constraint $S_k(\pi) \geq \delta_k$.

- The optimal attack should be stepwise optimal
- It suffices to solve

Optimal allocation

Given $\delta > 0$, find the optimal allocation $\{\delta_k\}_{k=0}^{N-1}$ that

minimize
$$\sum_{k=0}^{N-1} D_k^*(\pi)$$
, subject to $\delta_k \ge 0$, $\sum_{k=0}^{N-1} \delta_k = \delta$

Theorem (Optimal Attack)

The optimal attack subject to $S(\pi) \ge \delta$ is given by

$$\widetilde{\mathbf{v}}_k := \widetilde{\mathbf{u}}_k - \mathbf{u}_k \sim \mathcal{N}(0, \frac{\delta_k}{G_k})$$

independent of the system dynamics at every step. The δ_k is given by

$$\delta_k = \frac{1}{c_k - \theta} - \frac{1}{c_k}$$

where $c_k = \frac{B_k^2}{\sigma_k^2 G_k}$, and $0 < \theta < \min_{0 \le k \le N-1} c_k$ is a constant such that

$$\sum_{k=0}^{N-1} \frac{1}{c_k - \theta} - \sum_{k=0}^{N-1} \frac{1}{c_k} = \delta$$

31

INTRUSION DETECTION

Figure 5: Legitimate and Falsified dynamics in a scalar LQG system: N = 50, $A_k = B_k = Q_k = 1$, $R_k = 0$ and $\sigma_k^2 = k + 25 \quad \forall k$

- Vector LQG systems
- Imperfect observations
- Attack under specific detection schemes

QUESTIONS?