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PROBLEM FORMULATION

Detection of a random signal that lies on a known rank-one subspace:

H0 :

{
Xn = Wn, n = 1, . . . , N

Ym = W
(s)
m , m = 1, . . . ,M

H1 :

{
Xn = Sna + Wn, n = 1, . . . , N

Ym = W
(s)
m , m = 1, . . . ,M

GAUSS-GAUSS DETECTOR

I GLRT detector that assumes jointly Gaussian signal and noise.

I Advantages: simple implementation, ease of performance analysis.

I Disadvantage: sensitive to model mismatch.

PLUG-IN NSDD-GLRT

I Conditional GLRT detector that assumes a compound-Gaussian noise.

I The scatter matrix is replaced by noise-only secondary data ML estimate.

I Advantages: robust against heavy-tailed noise outliers.

I Disadvantage: Computationally demanding in high-dimensions, does not reject
large-norm outliers.

MEASURE TRANSFORMED (MT) GQLRT: BASIC IDEA

I Selects a Gaussian probability model that best empirically fits a transformed
probability measure of the data.

I By proper choice of the transform the MT-GQLRT can gain enhanced
robustness to outliers.

I Have the computational and implementation advantages of the GGD.

PROBABILITY MEASURE TRANSFORM

Let X ∈ Cp. Define the measure space (X ,SX , PX). Given a non-negative function
u : Cp→ R+ satisfying 0 < E [u (X) ;PX] <∞. A transform Tu : PX → Q

(u)
X is defined

as:
Tu [PX] (A) = Q

(u)
X (A) ,

∫
A

ϕu (x)dPX (x) ,

where A ∈ SX , and

ϕu (x) ,
u (x)

E [u (X) ;PX]
.

The function u (·) is called the MT-function.

THE MEASURE-TRANSFORMED MEAN AND COVARIANCE

I MT-mean: µ(u)
X , E [Xϕu (X);PX]

I MT-covariance: Σ
(u)
X , E

[
XXHϕu (X);PX

]
− µ

(u)
X µ

(u)H
X

I The mean and covariance under Q(u)
X can be estimated using samples from PX.

µ̂(u)
X

,
∑N

n=1
Xnϕ̂u (Xn) and Σ̂

(u)

X
,
∑N

n=1
XnX

H
n ϕ̂u (Xn)− µ̂(u)

x µ̂(u)H
x

where ϕ̂u (Xn) , u (Xn)/
∑N

n=1 u (Xn)

ROBUSTNESS TO OUTLIERS

I Define the ε-contaminated probability measure:

Pε , (1− ε)PX + εδy,

where 0 ≤ ε ≤ 1, y ∈ Cp, and δy is the Dirac probability measure at y.

I The influence function (IF) [1] of an estimator with statistical functional H[·]:

IFH (y;PX) , lim
ε→0

H [Pε]− H [PX]

ε
=
dH [Pε]

dε

∣∣∣∣
ε=0

I Describes the effect on the estimator of an infinitesimal contamination at y.

I An estimator is said to be B-robust if its IF is bounded.

Proposition (Boundedness of the influence function)

The influence functions of the empirical MT-mean and MT-covariance are
bounded if the MT-function u(y) and the product u(y)‖y‖2 are bounded.

MEASURE-TRANSFORMED (MT) GQLRT: DERIVATION OF THE TEST

I Compares the empirical KLDs between Q(u)
X and two normal distributions that

are characterized by the MT-mean and MT-covariance under each hypothesis:

Tu , D̂KL

[
Q

(u)
X ||Φ(u)

X;H0

]
− D̂KL

[
Q

(u)
X ||Φ(u)

X;H1

]
=

(
DLD

[
Σ̂

(u)

X
||Σ(u)

X;H0

]
+
∥∥∥µ̂(u)

X
− µ

(u)
X;H0

∥∥∥2(
Σ(u)

X;H0

)−1
)

−

(
DLD

[
Σ̂

(u)

X
||Σ(u)

X;H1

]
+
∥∥∥µ̂(u)

X
− µ

(u)
X;H1

∥∥∥2(
Σ(u)

X;H1

)−1
)

H1

R
H0

τ

I Equivalent test-statistic under any MT-function u (x) = υ
(
P⊥a x

)
, υ : Cp→ R+

T ′u =
aH
(
Σ

(u)
W

)−1

Ĉ
(u)
X

(
Σ

(u)
W

)−1

a

aH
(
Σ

(u)
W

)−1

a
,

where Ĉ
(u)
X , Σ̂

(u)

X
+ µ̂(u)

X
µ̂(u)H

X
.

PLUG-IN MEASURE-TRANSFORMED GQLRT

I Replace Σ
(u)
W by its empirical estimate obtained from the secondary data:

T ′′u ,
aH
(
Σ̂

(u)

Y

)−1

Ĉ
(u)
X

(
Σ̂

(u)

Y

)−1

a

aH
(
Σ̂

(u)

Y

)−1

a

H1

R
H0

t,

I Under some mild regularity conditions T ′′u is asymptotically normal.

I To induce outlier resilience, choose the Gaussian MT-function:

uG (x;ω) = exp
(
−
∥∥P⊥a x

∥∥2
/ω2
)
, ω ∈ R++.
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SELECTION OF THE GAUSSIAN MT-FUNCTION WIDTH PARAMETER

I Principle: control the asymptotic local power sensitivity to change in the signal
variance relative to the omniscient LRT under Gaussian data.

I Selection Rule:
ω∗

Y
= inf

{
ω ∈ R+ : R̂Y(ω) = r

}
.

R̂Y(ω) ,
∂β̂uG
∂σ2

S

/
∂β̂LRT
∂σ2

S

∣∣∣∣
σ2S=0

=

√
N max

(
0, det

(
Ip − 1

ω4

(
P⊥a Σ̂

(uG)

Y
(ω)
)2
))

+ Q−1(α)

√
N + Q−1(α)

I Constant false alarm rate (CFAR) w.r.t. the noise power.

EXAMPLES

I Parameters: 8-element ULA, N = M = 500, Pfa = 10−3, r = 0.9, BPSK signal.
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(a) Gaussian noise
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(b) Elliptical t−distributed noise
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(c) Non-elliptical noise
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(d) CFAR analysis
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