

# THE NETWORK NULLSPACE PROPERTY FOR COMPRESSED SENSING OF BIG DATA OVER NETWORKS

MADELON HULSEBOS, ALEXANDER JUNG Delft University of Technology, Aalto University

### BACKGROUND

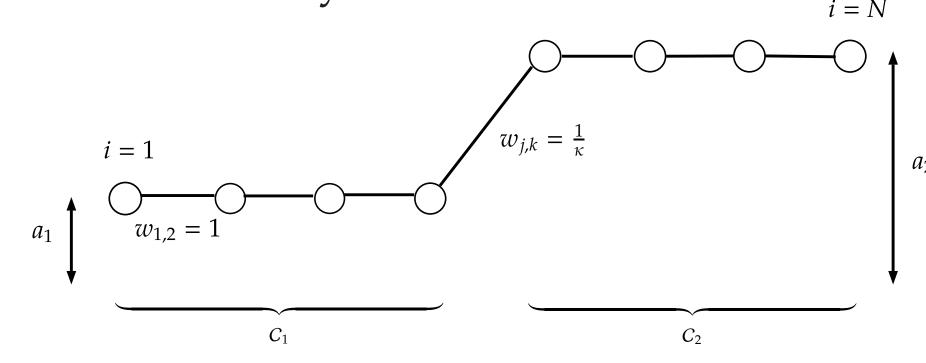
- Sparse Label Propagation (SLP) [1] extends Label Propagation by requiring signal differences over edges to be sparse
- SLP takes the network structure of data into account
- SLP learns entire graph signals from few samples
- SLP amounts to a convex optimization method based on the primal-dual method popularized by Chambolle and Pock [2]

### CONTRIBUTION

- we introduce the Network Nullspace Property (NNSP)
- NNSP involves the sampling set and the cluster structure of the underlying graph
- NNSP requires the existence of network flows with demands
- NNSP is a sufficient condition for accurate recovery of clustered graph signals via SLP

## GRAPH SIGNAL RECOVERY

- given:
  - data graph  $G = (V, E, \mathbf{W})$
  - nodes represent data points, edges correspond to similarities (correlations) between data points
  - weighted adjacency matrix  $\mathbf{W} \in \mathbb{R}_+^{N \times N}$
  - signal samples  $\mathbf{y}[i] = \mathbf{x}[i] + \boldsymbol{\varepsilon}[i]$ , for  $i \in \mathcal{M}$
  - sampling set  $\mathcal{M}$  is small compared to the size of graph  $|\mathcal{M}| \ll |\mathcal{V}|$
- goal:
  - recover the clustered graph signal value  $\mathbf{x}[i]$  for all nodes  $i \in \mathcal{V}$  accurately via SLP



### SPARSE LABEL PROPAGATION

• clustered graph signals have small total variation:

$$\|\mathbf{x}\|_{TV} := \sum_{\{i,j\} \in \mathcal{E}} \mathbf{W}_{i,j} |\mathbf{x}[j] - \mathbf{x}[i]|$$

• SLP amounts to the convex optimization problem:

$$\hat{\mathbf{x}} \in \arg\min_{\tilde{\mathbf{x}} \in \mathbb{R}^{\mathcal{V}}} ||\tilde{\mathbf{x}}||_{TV} \text{ s.t. } \tilde{\mathbf{x}}[i] = \mathbf{x}[i] \text{ for all } i \in \mathcal{M}$$
 (1)

## PIECE-WISE CONSTANT GRAPH SIGNALS

• we consider piece-wise constant (clustered) graph signal

$$\mathbf{x}[i] = \sum_{\mathcal{C} \in \mathcal{F}} \mathbf{a}_{\mathcal{C}} \mathcal{I}_{\mathcal{C}}[i], \tag{2}$$

with some partition  $\mathcal{F} = \{\mathcal{C}_1, \dots, \mathcal{C}_{|\mathcal{F}|}\}.$ 

• NOTE: SLP does not require knowledge of  $\mathcal{F}$ !

## NETWORK FLOWS WITH DEMANDS [3]

**Definition 1** A flow with demands  $g[i] \in \mathbb{R}^{\mathcal{V}}$ , for  $i \in \mathcal{V}$ , is a mapping  $f[\cdot] : \mathcal{E} \to \mathbb{R}$  satisfying the conservation law:

$$\sum_{j \in \mathcal{N}^+(i)} f[\{i,j\}] - \sum_{j \in \mathcal{N}^-(i)} f[\{i,j\}] = g[i]$$

at every node  $i \in \mathcal{V}$ .

## NETWORK NULLSPACE PROPERTY (NNSP)

**Definition 2** A sampling set  $\mathcal{M} \subseteq \mathcal{V}$  is said to satisfy the NNSP, if for any signature  $\sigma_e \in \{-1, +1\}^{\partial \mathcal{F}}$ , which assigns the sign  $\sigma_e$  to a boundary edge  $e \in \partial \mathcal{F}$ , there is a flow f[e] with demands g[i] = 0 for  $i \notin \mathcal{M}$ , and

$$f[e] = 2\sigma_e W_e \text{ for } e \in \partial \mathcal{F}, f[e] \leq W_e \text{ for } e \in \mathcal{E} \setminus \partial \mathcal{F}.$$

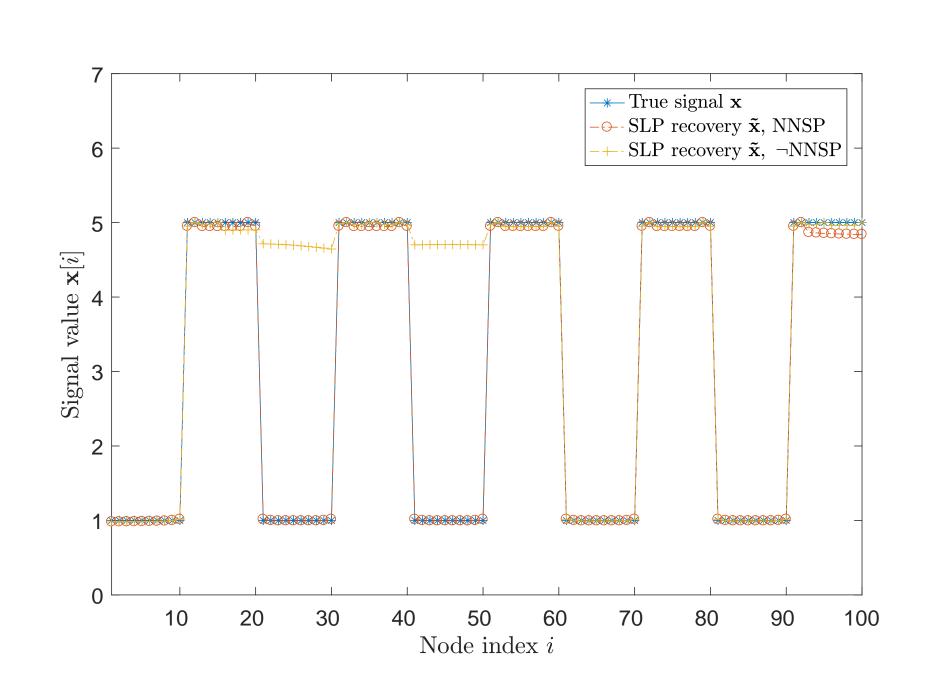
## NNSP IMPLIES ACCURATE RECOVERY BY SLP

**Theorem 3** If the sampling set  $\mathcal{M}$  satisfies NNSP, then any solution  $\hat{\mathbf{x}}$  of (1) satisfies

$$\|\hat{\mathbf{x}}[\cdot] - \mathbf{x}[\cdot]\|_{TV} \le 6 \min_{\mathbf{a}_{\mathcal{C}} \in \mathbb{R}^{\mathcal{V}}} \|\mathbf{x}[\cdot] - \sum_{\mathcal{C}=1}^{|\mathcal{F}|} \mathbf{a}_{\mathcal{C}} \mathcal{I}_{\mathcal{C}}[\cdot]\|_{TV}$$

for any clustered graph signal  $\mathbf{x} \in \mathbb{R}^{\mathcal{V}}$  of the form (2)

#### **EXPERIMENTS**



If NNSP does not hold, recovery fails

#### FUTURE RESEARCH

- Extending our results to networks with certain structure
- Deriving information theoretic limits on required sample size

## REFERENCES

- [1] A. Jung and A. Mara and S. Jahromi and A. Hero. "Semi-Supervised Learning via Sparse Label Propagation". JMLR, 2017.
- [2] A. Chambolle and T. Pock. "A first-order primal-dual algorithm for convex problems with applications to imaging." J. Math. Imaging Vision, 40(1):120-145, 2011.
- [3] J. Kleinberg and E. Tardos. "Algorithm Design". Addison Wesley, 2006.