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Abstract
In this paper, we present an algorithm called Reliable Mask Selection-

Phase Difference Channel Weighting (RMS-PDCW) which selects the target
source masked by a noise source using the Angle of Arrival (AoA) information
calculated using the phase difference information. The RMS-PDCW algorithm
selects masks to apply using the information about the localized sound source
and the onset detection of speech. We demonstrate that this algorithm shows
relatively 5.3 percent improvement over the baseline acoustic model, which
was multistyle-trained using 22 million utterances on the simulated test set
consisting of real-world and interfering-speaker noise with reverberation time
distribution between 0 ms and 900 ms and SNR distribution between 0 dB up
to clean.

1 Motivation

1. Spatial masks may be constructed using the Angle of Arrival (AoA)
information.

2. AoA is not accurate under reverberation.

3. We selectively apply masks based on their reliability.

2 Entire Structure

1. Angle Of Arrival(AoA) information is used for obtaining binary
masks.

2. Reliable Binary Mask Selection(RBMS) is used to select reliable
binary masks.

3. The channel mask for each channel is calculated using Channel
Weighting(CW) [1].

4. For each filter bank channel, Reliable Channel Mask Selec-
tion(RBMS) approach is used.

5. Speech is resynthesized using Over-Lap Addition(OLA) after apply-
ing masks.

The entire structure is shown in Fig. 3.
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Figure 1: A block diagram showing the structure of the Reliable Mask Selection -
Phase Difference Channel Weighting (RMS-PDCW) algorithm.

Figure 2: Two microphones and the target sound source. The space inside a room is
divided into three regions depending on the azimuth angle θ: Θ+, Θo, and Θ−. We
use θ0 of 15o.

2.1 Angle of Arrival(AoA) calculation

The AoA θ[m,ωk] is estimated using the following equation [2]:

θ[m,ωk] = arcsin

(
cair∆φ[m,ωk]

fsωkd

)
, 0 ≤ k ≤ K

2
, (1)

where fs is the sampling rate of the signal, and cair is the speed of
sound in air, ∆φ[m,ωk] is the phase difference, and d is the distance
between two microphones.

2.2 Reliable Binary Mask Selection

• For each spatial region Θ+, Θo, Θ− shown in Fig. 2, the mean and
standard deviation of the AoA is calculated.

• Presence of the target source and noise sources in each region is de-
termined using the mean and standard deviation of AoA calculated
from each region.

•We apply binary masks corresponding to Θ+, and Θ−, only when
noise source is detected in that region.

• If target source is not detected, binary masks are not applied for that
frame.

2.3 Reliable Channel Mask Selection

• Channel mask is calculated using the Channel Weighting(CW) algo-
rithm [1].

•Onset portion of spectrum is determined using [3].

• Channel mask is applied only for the onset portion.
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Figure 3: The architecture for acoustic model training using the room simulator and
LSTMs and a DNN (LDNN) [4, 5].

4 Experimental Results
• For training, we used an anonymized 22-million English utterances

(18,000-hr), which are hand-transcribed.
• For evaluation, we used around 15-hour of utterances (13,795 utter-

ances) obtained from anonymized voice search data. We also gener-
ate noisy evaluation sets from this relatively clean voice search data.
• The “room simulator” in [5] was used to generate noisy utterances.
• For reverberation time, we used a uniform distribution from 0 sec-

onds to 900 ms. For the SNR distribution, we used 0 dB, 5 dB, 10
dB, 15 dB, 20 dB, and the clean utterance in equal proportions.
• For Multistyle TRaining, we used the same configuration used in

training the Google Home system [5, 6].
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Figure 4: Word Error Rates (WERs) for the voice search test set at different rever-
beration time corrupted by interfering speech.
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Figure 5: Word Error Rates (WERs) for the voice search test set at different rever-
beration time corrupted by the DEMAND noise database.
RMS-PDCW system shows relatively 5.3 percent improvement over
the MTR-baseline.

5 Conclusions

In this paper, we described the RMS-PDCW algorithm which selects
more reliable masks and applies them to utterances corrupted by noise
and reverberation. Our experimental results show that the this algo-
rithm shows relatively 5.3 % WER reduction over the single-channel
baseline trained using the room simulator .
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