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Abstract
In this paper, we present an algorithm which introduces phase-perturbation

to the training database when training phase-sensitive deep neural-network
models. Traditional features such as log-mel or cepstral features do not
have have any phase-relevant information. However features such as raw-
waveform or complex spectra features contain phase-relevant information.
Phase-sensitive features have the advantage of being able to detect differences
in time of arrival across different microphone channels or frequency bands.
However, compared to magnitude-based features, phase information is more
sensitive to various kinds of distortions such as variations in microphone char-
acteristics, reverberation, and so on. For traditional magnitude-based features,
it is widely known that adding noise or reverberation, often called Multistyle-
TRaining (MTR), improves robustness. In a similar spirit, we propose an al-
gorithm which introduces spectral distortion to make the deep-learning mod-
els more robust to phase-distortion. We call this approach Spectral-Distortion
TRaining (SDTR). In our experiments using a training set consisting of 22-
million utterances with and without MTR, this approach reduces Word Error
Rates (WERs) relatively by 3.2 % and 8.48 % respectively on test sets recorded
on Google Home.

1 Motivation
1. Recently, phase sensitive features have been introduced (e.g. [1, 2,

3]). which assumes all the microphones are ideal.

2. These features are sensitive to phase distortion arising from mi-
crophone distortion, reverberation, auralization, etc in real environ-
ments.

3. We may intentionally add phase distortion to the training set so that
these features become more robust.

2 Entire Structure (Fig. 1)
1. Room simulator generates simulated far-field utterances.

2. Spectral Distortion Model(SDM) applies magnitude and phase dis-
tortion for each utterance.

3. Complex FFT (CFFT) feature is obtained.

4. Factored Complex Linear Prediction (fCLP) mimics the filter-and-
sum operation in the spectral domain [1].

5. The output is then passed to a complex linear projection layer [4].

6. The acoustic model pipeline consists of a stack of LSTM layers fol-
lowed by a DNN (LDNN) layer [5].

3 Spectral Distortion Model (SDM)
The spectrum distortion procedure is summarized by the following
pseudo-code (Fig. 2):

for each utterance in the training set do
for each microphone channel of the utterance do

Create a random Spectral Distortion Model (SDM) using (1).
Perform Short-Time Fourier Transform (STFT).
Apply this transfer function to the spectrum.
Re-synthesize the output microphone-channel using Over-

Lap Addition (OLA).
end for

end for

The Spectral Distortion Model (SDM) is described by the following
equation:

Dl(e
jωk) = eaml(k)+jpl(k), 0 ≤ k ≤ K

2
,

0 ≤ l ≤ L− 1. (1)

where l is the microphone channel index and L is the number of micro-
phone channels. In the case of Google Home, since we use two micro-
phones, L = 2. a is a scaling coefficient defined by ln(10.0)/20.0. k is
the discrete frequency index, ωk is defined by ωk =

2πk
K whereK is the

Discrete Fourier Transform(DFT) size. ml(k) and pl(k) are Gaussian
random samples pulled from the following Gaussian distributions m
and p respectively:

m ∼ N (0, σ2m) (2a)
p ∼ N (0, σ2p) (2b)

4 Acoustic Model Training
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Figure 1: The architecture for acoustic model training using the room simulator and
LSTMs and a DNN (LDNN) [6, 2].

5 Experimental Results

• For training, we used an anonymized 22-million English utterances
(18,000-hr), which are hand-transcribed.

• For evaluation, we used around 15-hour of utterances (13,795 utter-
ances) obtained from anonymized voice search data. We also gener-
ate noisy evaluation sets from this relatively clean voice search data.

• The “room simulator” in [2] was used to generate simulated noisy
utterances.

• For Multistyle TRaining, we used the same configuration used in
training the Google Home system [2, 1].

• Rerecorded test sets are prepared using three different real Google
Home devices.

•MDTR stands for magnitude distortion training without distorting
phase.

• PDTR stands for phase distortion training without distorting magni-
tude.

RMS-PDCW system shows relatively 5.3 percent improvement over
the MTR-baseline.

6 Conclusions
In this paper, we described Spectral Distortion TRaining (SDTR) and
its subsets Phase Distortion TRaining (PDTR) and Magnitude Distor-
tion TRaining (MDTR). These training approaches apply the Spectral
Distortion Model (SDM) to each microphone channel of each train-
ing utterance. This algorithm is developed to make the phase-sensitive
neural net model robust against various distortions in signals. Our ex-
perimental results show that the phase-sensitive neural-net trained with
PDTR is much more robust against real-world distortions. The final
system shows relatively 3.2 % WER reduction over the MTR training
set in [2] for Google Home.
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