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Overview

Image restoration refers to the task of recoving an image from a corrupted
sample

Examples:

Inpainting

Denoising

etc.

Task is generally ill-posed
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Problem Formulation

Task:
Let y denote the observed image, x∗ be the original unobserved image, A
a known generative operator A, and noise ε.

y = A(x∗) + ε,

We seek to recover x̂ with an objective of the form

x̂ = argmin
x

d(y,A(x)) + λR(x)

Where R(·) is some prior, and d(·) is some distance metric(e.g. p-norm).
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Background I

Traditional Approach:

Hand designed prior, R, (e.g. TV, Low-rank, sparsity, etc.)

Solve the objective function with some solver

Disadvantage: Priors tend to be simple, generally unable to capture
complicated structures in data
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Background II

Data-driven, direct:

Train a deep network, h(·; Θ) on clean and corrupted pairs in training
set D, that maps the corrupted measurements directly predict a clean
version.

Θ∗ = argmin
Θ
‖xi − h(yi; Θ)‖p + λ ‖Θ‖ , ∀(xi, yi) ∈ D

Output image:

x̂ = h(y; Θ∗)

Disadvantages: New model needs to be trained for each new
corruption
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Overview of Generative Adversarial Nets I

Formulated as a 2-player minimax game between a Generator G and
discriminator D with value function V (G,D) where,

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1−D(G(z))]

Intuitively,

D is a classifier that predicts if the given input belongs to the training
dataset

G is a function that generate signals that are able to fool D from a
random latent variable z

Note that GANs do not model px explicitly.

Credit: Goodfellow et al. NIPS 2014
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Overview of Generative Adversarial Nets II

Under review as a conference paper at ICLR 2016

Figure 10: More face generations from our Face DCGAN.

15

Convincing faces generated by fully convolutional GANs (DCGAN)

Credit: Radford et al. ICLR 2016 7 / 19



Our Proposed Method I

Leveraging the success of GANs, we combine the flexibility of traditional
approaches together with the power of a data-driven prior.

Ideally, we would like to solve the following MAP problem,

argmin
x
‖y −Ax‖p + λ log pX(x)

However, this cannot be done naively with GANs as px is not modelled
explicitly.
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Our Proposed Method II

Objective function:

ẑ = arg min
z
‖y −A(G(z))‖p

+ λ

(
log(1−D(G(z)))− log(D(G(z)) + log(pz(z))

)

the first term is the reconstruction loss or the data fidelity term

the second term is our proposed data-driven prior.

We solve for ẑ, initialized randomly, using gradient descent variants
(e.g. ADAM).

Finally x̂ = G(ẑ), and optional blending step can also be applied if
desired.
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Our Proposed Method - Assumptions

Assumptions:

we know the class of images we are restoring

we have a corresponding well-trained generator G and discriminator
D for this class of images
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Justification of Regularizer

Ideally we would like to use pX(x) as the prior. However, this is not
available for GANs. For a fixed G, the optimal discriminator D for a given
generator G is

D∗(x) =
pX(x)

pX(x) + pG(x)
,

Rearranging terms,

log(pX(x)) = log(D(x))− log(1−D(x))

+ log(pZ(z)) + log

(∣∣∣∣∂z∂x
∣∣∣∣),

where pG(x) = pZ(z)
∣∣ ∂z
∂x

∣∣. Since
∣∣ ∂z
∂x

∣∣ is intractable to compute, we
assume it to be constant.
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Choice of A

Finally we need to choose an A for the restoration task
A should:

reflect the forward operation that generates the corruption

sub-differentiable

For specific tasks:

Image Inpainting: (weighted) masking function

Image Colorization: RGB to HSV conversion, using only V (RGB to
grayscale)

Image Super Resolution: Down sampling operation

Image Denoising: Identity

Image Quantization: Identity. Ideally, a step function might make
sense but it produces no meaningful gradients
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Datasets and Corruption Process

Dataset:

GAN trained on CelebA dataset

Faces were aligned and cropped to 64× 64

Corruption process:

Semantic Inpainting: The corruption method is a missing center
patch of 32× 32;

Colorization: The corruption is the standard grayscale conversion;

Super Resolution: The corruption corresponds to downsampling by
a factor of 4;

Denoising: The corruption applies additive Gaussian noise, with
standard deviation of 0.1 (pixel intensities from 0 to 1);

Quantization: The corruption quantizes with 5 discrete levels per
channel.
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Visualization of Optimization for Inpainting



𝒛(0) 𝒛(1) ො𝒛Input Blending

Credit: Yeh et al. CVPR 2017 14 / 19



Results

Table: Quantitative comparison on image restoration tasks using SSIM and
PSNR(dB).

Applications Inpainting Colorization Super Res Denoising Quantization
Metric SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

TVa 0.7647 23.10 - - 0.6648 21.05 0.7373 21.97 0.6312 20.77
LRb 0.6644 16.98 - - 0.6754 21.45 0.6178 18.69 0.6754 20.65

Sparsec 0.7528 20.67 - - 0.6075 20.82 0.8092 23.63 0.7869 22.67
Ours 0.8121 23.60 0.8876 20.85 0.5626 19.58 0.6161 19.31 0.6061 19.77

Other than inpainting, our method seems to perform poorly under these
metrics.
But is that the full story?

aAfonso et al. TIP 2011
bHu et al. PAMI 2013
cElad et al. CVPR 2006, Yang et al. TIP 2010
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Qualitative Results I

Real Input TV LR Sparse Ours

Inpainting

Colorization

Super Res

Denoising

Quantization
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Qualitative Results II

Real Input TV LR Sparse Ours

Inpainting

Colorization

Super Res

Denoising

Quantization
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Conclusion

Contributions:

Using GANs as a data-driven prior

Same model can be used for different problems (no re-training!)

Not restricted to a specific generative network

Limitations and potential improvements:

Current GANs are not yet able to handle general images

Better initial z, perhaps with a LUT or another deep network?
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Questions?

Code and more examples at:

https://goo.gl/vNokXj
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