

LOW COMPLEXITY JOINT RDO OF PREDICTION UNITS COUPLES FOR HEVC INTRA CODING

Maxime Bichon^{+,*}, Julien Le Tanou⁺, Michael Ropert⁺, Wassim Hamidouche^{*}, Luce Morin^{*}, Lu Zhang^{*} ⁺ERICSSON TV and Media *INSA Rennes, CNRS, IETR - UMR 6164

CI. Context & Contribution

- MPEG Intra Coding generates dependencies between Coding Units (*CU*): Closed-Loop prediction and *CABAC*
- Dual Joint Rate-Distortion Optimization (*Dual-JRDO*) is an exhaustive search for prediction parameters which minimizes a cost function affecting two neighbor CUs
- **Dual-JRDO Model** Notations \circ Coding parameters: \vec{p} ○ Index of *CU*: *i* • Distortion **D** and Rate **R**
 - Example of CTU partitioned into 16 CUs optimized

Contribution : A low complexity version is proposed in order to estimate opportunities for real-time encoding

 \circ R-D Cost Function: $I(\vec{p})$

through Dual-JRDO

• **Dual-JRDO** equation

• Exhaustive optimization of CUs 2 by 2 (dotted areas) \circ Parameter to optimize \vec{p} is the prediction mode $\{p_i^*, p_{i+1}^*\} = arg \min_{i} (J_i(p_i) + J_{i+1}(p_i, p_{i+1}))$

III. Acceleration Methods

- **1. Adapting to Spatial Activity**
- Down-sample 16x16 CUs into 4x4 CUs
 - Pixel real position: *m*, *n*
 - \circ Pixel down-sampled position: p, q
 - Pixel's luminance: I

$$I(p,q) = \frac{1}{16} \sum_{m=1}^{4} \sum_{n=1}^{4} I(p/4 + m, q/4 + n)$$

• Compute the spatial activity \circ Activity of *CU i*: *g*_{*i*} $g_i = \frac{1}{16} \sum \sum \min \begin{cases} |I_i(p,q) - I_i(p-1,q)| \\ |I_i(p,q) - I_i(p,q-1)| \end{cases}$ p=1 q=1

- 2. Short-listing of the depending *CU*
- Observations
 - *Dual-JRDO* sequentially optimized two prediction modes $\{p_i, p_{i+1}\}$ • During p_{i+1} optimization, p_i is fixed
 - The second mode analysis is an independent optimization
- Any fast solution which reduce the number of modes can be applied

- 3. Residual Analysis based Clustering
- Focusing on Distortion dependency
 - Identical residue leads to identical reconstructed CU
 - If two modes results into the same decoded CU, the next CUs are impacted the same manner

Solution based on modes clustering

- If g_i lower than a threshold Th• Do not apply *Dual-JRDO*
- Th is dependent of quantizer QP $Th(QP) = \alpha + e^{\beta * QP}$

• We choose one of the most efficient: Rough Mode Decision (*RMD*)

• RMD

• Estimate the Most Probable Modes (*MPMs*)

- Estimate the modes with lowest SATD score
- Create a shortlist based on this two sets
- Apply *RDO* only on this shortlist

During RMD process for p_i

• Cluster all modes based on their residue

- If p_i is the first analyzed mode of its ¦ **||.** cluster
 - Consider all possible modes for p_{i+1}

III. Otherwise

- Consider p_{i+1}^* attached to this cluster
- Consider the new *MPMs* if its applies

IV. Performances

- Test environment
- HM16.12 Anchor

- **RDO** configuration
- Common Test Co All-Intra
- PSNR based Bjont computation

	r				1	
 Test environment 	Average BD-BR	C ₀	C ₁	C ₂	C ₃	C ₄
 HM16.12 Anchor 	Class B	-0.45%	-0.42%	-0.38%	-0.46%	-0.35%
 RDO configuration 	Class C	-0.61%	-0.54%	-0.47%	-0.61%	-0.42%
- Common Test Conditions:	Class D	-0.63%	-0.59%	-0.46%	-0.64%	-0.44%
All-Intra	Class E	-0.64%	-0.58%	-0.52%	-0.64%	-0.47%
 PSNR based Bjontegaard 	Class F	-0.87%	-0.76%	-0.67%	-0.88%	-0.60%
computation	AII	-0.63%	-0.57%	-0.49%	-0.63%	-0.45%
- 5 QPs {22,27,32,37,42}	Best Sequence	-1.12%	-1.01%	-0.87%	-1.11%	-0.82%
	Worst Sequence	-0.19%	-0.21%	-0.20%	-0.20%	-0.20%
· Configurations of Duck IDDO						
 Configurations of <i>Dual-JRDO</i> 	Complexity (%)	C ₀	C ₁	C ₂	C ₃	C ₄
C ₀ : No acceleration	Class B	1137%	411%	199%	699%	133%
C ₁ : Adapting to spatial activity	Class C	1025%	540%	192%	702%	156%
C_2 : Short-listing of p_{i+1}	Class D	945%	565%	197%	703%	160%
C ₃ : Residue clustering of p _i	Class E	1091%	336%	199%	592%	116%
C ₄ : All accelerations combined	Class F	1099%	401%	193%	607%	124%
	AII	1062%	454%	196%	666%	138%
	Best Sequence	920%	198%	185%	467%	74%
	Worst Sequence	1266%	662%	212%	735%	178%

V. Conclusion

- Observations
 - *Dual-JRDO* is most effective on textured areas
 - Methods reducing the number of modes to test (as *RMD*) are efficient when extended to dependent CUs • Many predictions lead to same

)	L		3	2)		- , 4	<u> </u>	,5	Z	,5	Ι,	,4	Zj	
--	---	---	--	---	----	--	-------	----------	----	---	----	----	----	----	--

residual data and create redundant computations in dependent schemes

Conclusion

• *Dual-JRDO* can be highly speed up and be 5x faster

• Even faster implementation can bring constant BD-BR improvement (-0.45%)

• Future Work

• Use *Dual-JRDO* to improve other coding parameters: Quantization, Transform, Filters, ...