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Problem
Consider the problem of localising k non-negative point sources on the interval [0, 1], namely finding their locations
t1, . . . , tk and magnitudes a1, . . . , ak ≥ 0 from m noisy samples y1, . . . , ym which consist of the convolution of the input
signal with a known kernel φ (e.g. Gaussian φ(t) = e−t

2/σ2

) and additive noise η bounded by δ. We use the formulation of
the problem from [4].

Input signal
x is the discrete measure
we want to reconstruct.

x(t) =
k∑
i=1

ai · δti ,

ti and ai (i = 1, . . . , k) are the locations
and magnitudes of the point sources.

Measured signal
yi are the samples

we use to reconstruct x.

yj =

∫
[0,1]

φ(t− sj)x(dt) + ηj ,

where sj (j = 1, . . . ,m) are sampling locations
and η = [η1, . . . , ηm]T with ‖η‖2 ≤ δ is the
noise.

Feasibility problem
We solve the following problem

to find x from y

Find z ≥ 0 subject to∥∥∥∥∥y −
∫

[0,1]

Φ(t)z(dt)

∥∥∥∥∥
2

≤ δ (1)

where

y = [y1, . . . , ym]T ,

Φ(t) = [φ(t− s1), . . . , φ(t− sm)]T .

Application example
We sample at specific points the sound emitted by ships
(sources) traveling along a shipping lane in a 2D region of
interest and we want to find their locations and the overall
sound level, either in a static or in a dynamic setting.
The problem is described in more detail in [2].
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An example of a receiver and source configuration
in the region of interest.

Results
Setup

Given the source locations t1, . . . , tk, we define:

• ∆ = mini6=j |ti − tj | is the minimum separation of
the sources

• For λ ∈ [0, 1
2 ) and for each source ti, there exists a

sampling location sl(i) such that |sl(i) − ti| < λ∆

• Ti,ε = (ti − ε, ti + ε) and TCε = [0, 1] \ ∪ki=1Ti,ε for
some 0 < ε < ∆/2.

T1,ε T2,ε T3,ε

t1 t2 t3

0 1sl(1) sl(2) sl(3)

For a solution x̂ to the Feasibility Problem (1)
and the true measure x, we show that the error
in Ti,ε is bounded and proportional to the noise

level δ and ε.

Theorem 1 - General kernel

Let x̂ be a solution of (1). If m ≥ 2k + 1, φ is Lipschitz
continuous and, for ∆, λ and ε defined previously, we
have

φ(λ∆) ≥ 2φ(∆− λ∆) +
2

∆

∫ 1/2−λ∆

∆−λ∆

φ(x) dx

then, for all i ∈ 1, . . . , k,∣∣∣∣∣
∫
Ti,ε

x̂(dt)− ai

∣∣∣∣∣ ≤ [2

(
1 +

φ∞‖b‖2
f̄

)
· δ

+L‖x̂‖TV · ε]‖A−1‖∞

where

• L is the Lipschitz constant of φ,

• φ∞ = maxt∈[0,1] |φ(t)|,

• b is the vector of coefficients of the dual certificate,
and f̄ is involved in its construction, see below,

• A is the sampling matrix defined below.

Theorem 2 - Gaussian kernel

Let x̂ be a solution of (1) with φ(t) = e−x
2/σ2

. If m ≥
2k + 2 and for every source we have two samples s, s′
such that |s − ti| ≤ η and |s − s′| ≤ η with η ≤ σ2. If

σ < 1√
3
,∆(T ) > σ

√
log 5

σ2 , then:∣∣∣∣∣
∫
Ti,ε

x̂(dt)− ai

∣∣∣∣∣ ≤
[
(c1 + F2) · δ + c2

‖x̂‖TV
σ2

· ε
]
F3,

where F2(k,∆(T ), 1/σ, 1/ε) < c3
kC2(1/ε)

σ2

[
c4

σ6(1−3σ2)2

]k
,

F3(∆(T ), σ, λ) < c5 and the universal constants
c1, c2, c3, c4, c5 and C2(1/ε) are given in [1].

Implications of Theorem 2
• Any solution consistent with measurements within δ is
within δ + ε of the true measure in the appropriate notion.

• As δ, ε→ 0, the measure x is the unique solution to (1).

• Similar results were previously known only for specific algo-
rithms (e.g. TV-norm minimisation).

Proof ideas
Dual certificate

We use the notion of dual certificate to show that the original signal x is the unique
solution of problem (1) with δ = 0, then extend this notion to δ > 0 to bound the error
between the true and the estimated solution. Using ideas from [3], we show that the dual
certificate exists if φ with different shifts forms a T-System and we construct it. The
dual certificate is a function:

q(t) =
k∑
j=1

bjφ(t− sj)

such that

• q(ti) = 0,∀i = 1, . . . , k,

• q(t) > 0,∀t 6= ti.

• q(t) ≥ G(t),∀t ∈ [0, 1]

where, for some f̄ > 0,

G(t) =

{
f̄ , if t ∈ TCε ,
0, otherwise.
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The shape of the dual certificate depends on
the locations of the sources and the samples.

Sampling matrix

Another important idea is that of diagonally dominance of the matrices A and B defined
below. The condition that A is diagonally dominant is related to how close to each
source we need the samples to be for a general φ in Theorem 1. The determinant of the
matrix B appears in the factor F2 in Theorem 2 for the Gaussian kernel. We bound it by
considering bounds on the eigenvalues of B.

A = (aij) ∈ Rk×k

aij =

{
|φ(sl(i) − tj)|, if i = j,

−|φ(sl(i) − tj)|, otherwise.

B = (Bij) ∈ R2k×2k

Bij =

[
φ(ti − tj) −φ′(ti − tj)
φ′(ti − tj) −φ′′(ti − tj)

]
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-100

-50

0

50

100

150

200

250

300

Example of matrix B.

References
[1] A. Eftekhari, J. Tanner, A. Thompson, B. Toader, and H. Tyagi. Sparse non-negative super-resolution: simplified and stabilised.

2018.

[2] P. Harris, R. Philip, S. Robinson, and L. Wang. Monitoring anthropogenic ocean sound from shipping using an acoustic sensor
network and a compressive sensing approach. Sensors, 16(3):415, 2016.

[3] S. Karlin and W. Studden. Tchebycheff Systems: with Applications in Analysis and Statistics. Interscience Publishers, 1966.

[4] G. Schiebinger, E. Robeva, and B. Recht. Superresolution without separation. Information and Inference: a journal of the
IMA, 7(1):1–30, 2018.

Acknowledgments
This project is in partnership with Dr Peter Harris and Dr Stephane Chretien (National Physical Laboratory),
who contributed the application problem.


