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APPLICATION EXAMPLE

Consider the problem of localising k non-negative point sources on the interval [0, 1], namely finding their locations | | We sample at specific points the sound emitted by ships

PROBLEM

ti,...,t, and magnitudes ay,...,a; > 0 from m noisy samples v, ..., vy,, which consist of the convolution of the input | | (sources) traveling along a shipping lane in a 2D region of
2 2 . . .
signal with a known kernel ¢ (e.g. Gaussian ¢(t) = e~* /") and additive noise n bounded by §. We use the formulation of | | interest and we want to find their locations and the overall
the problem from [4]. sound level, either in a static or in a dynamic setting.
The problem is described in more detail in [2].
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t; and a; (1 =1,...,k) are the locations where s; (j =1,...,m) are sampling locations | |
and magnitudes of the point sources. and 1 = [n1,...,n7m]|T with |[n|l2 < & is the An example of a recetver and source configuration
noise. wn the region of interest.

RESULTS
SETUP THEOREM 1 - GENERAL KERNEL THEOREM 2 - (GAUSSIAN KERNEL

(Given the source locations t1,...,t,, we define: Let & be a solution of (1). If m > 2k + 1, ¢ is Lipschitz

continuous and, for A, X and € defined previously, we
have

Let Z be a solution of (1) with ¢(t) = e~ /7" If m >
2k + 2 and for every source we have two samples s, s’
such that |s — ¢;| < n and |s — s'| < n with n < o2, If

A(T) > 0\/Iog 2, then:

o A =min;,;|t; —t;| is the minimum separation of
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o T, .= (t; —€,1; +€) and T¢ =[0,1] \U,i-“:sz-,e for
some 0 < e < A/2.
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5 1 F3(A(T),0,A\) < «¢5 and the universal constants

O——o—|8l(1) M 1 FLIZ 7y - ][l A™ oo 1, Co,C3,Cq,C5 and Cy(1/€) are given in [1].

h & & where

T1.c T, T5.. . L IMPLICATIONS OF THEOREM 2

* Lis the Lipschitz constant of ¢, e Any solution consistent with measurements within o is
For a solution 2 to the Feasibility Problem (1) o ¢ =max,cio (1)), within & + € of the true measure in the appropriate notion.
and the true measure x, we show that the error | , , ,
in T; . is bounded and proportional to the noise e b is the vector of coeflicients of the dual certificate, e As d,e — 0, the measure « is the unique solution to (1).
level 5 and €. and f is involved in its construction, see below,

e Similar results were previously known only for specific algo-
e A is the sampling matrix defined below. rithms (e.g. TV-norm minimisation).

PROOF IDEAS
DUAL CERTIFICATE SAMPLING MATRIX

We use the notion of dual certificate to show that the original signal x is the unique
solution of problem (1) with § = 0, then extend this notion to 6 > 0 to bound the error
between the true and the estimated solution. Using ideas from |3|, we show that the dual
certificate exists if ¢ with different shifts forms a T-System and we construct it. The
dual certificate is a function:

Another important idea is that of diagonally dominance of the matrices A and B defined
below. The condition that A is diagonally dominant is related to how close to each
source we need the samples to be for a general ¢ in Theorem 1. The determinant of the
matrix B appears in the factor F5 in Theorem 2 for the Gaussian kernel. We bound it by
considering bounds on the eigenvalues of B.
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Example of matrixz A. Example of matrix B.
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