
False Discovery Rate Control with Concave Penalties
using Stability Selection

Bhanukiran Vinzamuri and Kush R. Varshney
IBM Research

Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York, USA

Objectives

Study FDR control obtained using
concave penalties with stability se-
lection.
•Study FDR theory for concave
penalties.

•Understand the FDR bound in
stability selection and see how it
can be improved.

•Propose new FDR bound with
stability selection and concave
penalties.

Introduction

The standard linear regression problem
has the following form:

y = Xβ + ε, (1)
where y ∈ Rn is a response variable,
X ∈ Rn×p is a feature matrix, β ∈
Rp is a coefficient vector, and ε ∈ Rn

is a noise vector which has zero mean
and sub-Gaussian noise such that ε ∼
N(0, σ2In×n).
The following class of regularized linear
regression problems is studied here:

β̂ = argmin
β∈Rp

L(β;λ; γ), (2)

where
L(β;λ; γ) = 1

2n
‖y−Xβ‖2

2+
p∑
j=1

h(βj;λ; γ),
(3)

β = (β1, . . . , βp), and h(βj;λ; γ) is a
concave penalty function consisting of
parameters λ and γ.
The value of this penalty evaluated for
a specific regression coefficient vector
β ∈ Rp

‖h(β;λ; γ)‖1 = p∑
j=1

h(βj;λ; γ) (4)
hMCP (t;λ; γ) = min{λt− t2/2γ, λ2γ/2}.
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Figure 1: Comparison of Lasso vs Minimax Con-
cave Penalty (MCP).

Motivation

Theoretical results indicate that for
a noise level with standard deviation
σ and universal amount of penaliza-
tion λuniv ≡ σ

√√√√√√2logp
n , MCP is said

to have a selection consistency prop-
erty [1, 2], which implies that the set of
selected variables is identical to the set
of true nonzero regression coefficients
with high probability. However, esti-
mating noise level precisely from real-
world data is a non-trivial task which
makes it difficult to set λuniv.
Our proposed stability selection with
concave penalties approach handles
this problem by defining a range of
permissible regularization parameters.
This is easier to define and makes the
framework less parameter dependent.

Notations

We review notations defined here [3].
For any regularization parameter λ ∈
Λ, the selected set Ŝλ represents the
set of features active in the model at
parameter λ. For every set K ⊆
{1, 2, . . . , p}, the probability of being
in the selected set Ŝλ is:

Π̂λ
K = P∗{K ⊆ Ŝλ(I)}, (5)

where P∗ represents the probability es-
timate.
For every variable k = {1, 2, . . . , p},
the selection probabilities are given by
Π̂λ
k, λ ∈ Λ. Let ŜΛ=∪λ∈ΛŜ

λ, be the
set of selected variables if varying the
regularization parameter λ in the set Λ.
Let V be the number of falsely selected
variables where

V = |N ∩ ŜΛ| (6)

Important Result

Theorem

Assume that the distribution of {1{k∈Ŝλ}, k ∈ N} is exchangeable for all
λ ∈ Λ. The expected number V of false positives for our approach is then
bounded for πthr ∈ (1

2, 1) by

E(V ) <
1

2πthr − 1

α + 9/4


2
|S|2

|N |
where α > 0.

Results
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Figure 2: Comparison of false positives with
varying noise levels for synthetic datasets.
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Figure 3: Comparison of false positives with
varying correlation levels for synthetic datasets.

Discussion

•Results indicate that our approach
(CLEVER) has lower number of false
positives discovered when compared
to Lasso, SS (Stability Selection) and
MCP at varying levels of noise and
correlation for synthetic datasets.

•Such effective FDR control helps in
improving model consistency and
interpretation. This analysis is very
important from a practitioner’s
perspective, as he or she can tune
the number of features to be selected
at a specified false positive error rate
or vice versa.

Conclusion

This approach has several advantages
over other competing methods while
conducting inference from the sparse
and noisy data such as (i) unbiased
regression, and (ii) high false positive
error control. We derived theoretical
guarantees for this approach which up-
per bounds the expected number of
false positives.

Future Work

As future work, we plan to combine
the knockoff method [4] with concave
penalties which also has robust guar-
antees on false positive control.
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