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The Sunspot Number time series: a benchmark in space science

1. Introduction
Sunspots are dark areas on the sun corresponding to regions of locally en-
hanced magnetic field and act as an indicator of the solar activity. They have
been counted since the invention of the telescope in the 17th century. The
count of spots from each observing stations are later combined on a monthly
basis at the Royal Observatory of Belgium to produce the International Sunspot
Number (ISN) [1]. While the time series of the ISN acts as a benchmark in a
large variety of physical sciences, as of today it lacks proper uncertainty quan-
tification and modeling.
We build upon the work in [3], which presents a first uncertainty analysis of
time domain errors and dispersion amongst the stations assuming a Poisson
distribution. In this poster, we propose a more comprehensive error model that
accounts for all types of errors known to the experts, taking into account the
zero-inflated and overdispersed nature of the data.

2. Model of Interest
We propose the noise model for the count of spots Ns

Yi(t) = (ε1(t)+ ε2(i , t))s(t)+ ε3(t),

where Yi(t) is the Ns recorded by station (i.e. observatory) i at time t and

s(t) true number of sunspots (integers)
ε1(i , t)∼ (0,σ2

1 (t)) dispersion error across stations
ε2(i , t)∼ (µ2(i , t),σ2

2 (i)) long term bias
ε3(t) error at minima : when s(t) = 0 (integers)

We assume that all terms are non-negative and jointly independent.

• Short-term (< 27 days or a solar rotation)
As ε1 is dominant at short term, we set µ2(i , t) = 1.
The short-term variability is i.d. among the stations, with ε̃(t) := ε1(t)+ ε2

Y (t) =

{
ε̃(t)s(t) if s(t)> 0
ε3(t) if s(t) = 0

• Long-term (> 27 days or a solar rotation)
We look at the long-term regime by applying a low pass-band filter on the
time series, typically a MA with a window larger than 27 days (? denotes the
smoothing process). ε2(i , t) is dominant in the long-term regime

Y ?
i (t) =

{
ε2(i , t)s(t)? if s(t)> 0
ε3(t)? if s(t) = 0

By analogy with the analysis of variance models, the identification constraint
of the model is

N

∏
i=1

µ2(i , t) = 1,

leading to the following estimator of the long-term bias

µ̂2(i , t) =
Y ?

i (t)(
∏

N
i=1 Y ?

i (t)
)1/N . (1)

3. Data

Fig. 1: Actual network of observing stations.

Characteristics of our dataset
I Period from January 1st, 1947 till December 31, 2013
I Subset of 21 stations
I Scaling

Due to different characteristics of the observing means (telescope, location,
etc.), a pre-processing is needed to rescale all stations to the same level.
We use a criteria of stability in time with respect to the median of the network
to select a pool Γ of Q ‘good’ stations.
medi denotes the median of Yi(t) over the pool Γ.
For each station i , we define a yearly scaling factor ki that is constant over
a year:

ki =
1
T

T

∑
t=1

medi∈Γ
Yi(t)

,

where we choose T equal to one year.

4. Solar signal estimation
We define a proxy for the true number of spots as :

µ̂s(t) = med
i∈Γ

Yi(t),

The PDF of µ̂s(t) for Ns may be approximated by a zero-altered generalized
negative binomial (ZANB).
A ZA distribution models the zero values by a Bernoulli distribution f0(x) and
non-zero values with a PDF f1(x) to be specified and defined with respect to a
different discrete point measure [5, 2]:

f (x) =

f0(0) if x = 0

(1− f0(0))
f1(x)

1−f1(0)
if x > 0

(2)

Here f1(x) is a generalized negative binomial.

Fig. 2: Histogram of µ̂s(t) for the count of spots Ns.The black line represents the fit of
the distribution. The parameters values are pbern = 0.115, p = 0.016, r = 0.602 for the
ZA-NB.

5. Short-term variations
When the median of the pool is different from zero, we have access to esti-
mated values of ε̃ by taking:

̂̃ε(i , t) = Yi(t)

µ̂s(t)

The PDF that fits best the distribution is a ZA t location-scale (t LS) [6, 4],
where the density function f1(x) of Eq. 2 is a t LS. Such distribution allows the
modeling of r.v. with heavier tails than the normal distribution.
The density of a t-Location-Scale is defined (for ν > 0 and σ > 0) by

f (x , µ,σ ,ν)tLS =
Γ( ν+1

2 )

σ
√

νπΓ( ν

2 )

ν + (x−µ)2

σ

ν

−( ν+1
2 )

Fig. 3: Histogram of ̂̃ε for the count of spots Ns. The continuous line shows the fit using
a t LS distribution, with parameters values equal to µ = 1.02 (mean), σ = 0.30 (standard
deviation), and ν = 3.13 (shape factor). The enclosed box represents a zoom on outliers
with values larger than 3.

6. Errors during solar minima

Observed values of ε3 are defined as counts made when the median of the
pool (a proxy for s(t)) is equal to zero.

Y (t) = ε3(t) when µ̂s(t) = 0

Its PDF may be described by a ZANB for the Ns.

Fig. 4: Histogram of ε̂3 for the counts of spots Ns. The continuous line shows the
fit using a ZANB distribution, with parameters values equal to pbern = 0.93, p = 0.4,
r = 0.07. The enclosed box represents a zoom on outliers with values larger than 1.

7. Long-term drifts
A moving average (MA) on 54 days was applied as a low-pass filter in order
to ensure that the denominator in Eq (1) is non-zero, even in periods of solar
minima.

Fig. 5: Estimation of the long-term drifts µ̂2(i , t) of Ns in four stations (CA, FU, UC and
SM). µ̂2(i , t) is shown averaged over 27 days (orange dotted line), 81 days (red dash-dot
line), 1 year (green dashed line) and 2.5 years (blue plain line).

Fig. 5 represents the long-term drifts associated to four stations for the period
studied. (We only represent it from 1970). Stations CA, FU, and UC are in-
cluded in the pool Γ and are relatively stable, unlike the last station, SM, which
displays severe drifts.

8. Summary
Estimated PDF

µ̂s(t) ε̃ ε3

Ns ZANB ZA t−LS ZANB

The best fit for the short-term error ε̃ was obtained with the Matlab function
allfitdist.m, while for µ̂s(t) and ε3 different distributions were tested manu-
ally.

Our model takes into account:
I Multiplicative and additive framework
I Incorporates prior information on all types of error
I Excess of zeros
I Over-dispersion

Key results
I Short-term error distribution
→ Detection of daily outliers

I Estimation of long-term drifts
→ Quality control of the stations

9. Discussion
This study paves the way for a more comprehensive statistical monitoring of
the stations. Such monitoring should include the definition of a robust and reli-
able pool of reference stations possibly evolving over time, and the triggering
of alert in real-time when a station begins to drift or if a break-point is observed.

An iterative procedure may be devised to redefine the pool of stations Γ from
this analysis. Indeed, once we have estimates for µ2(i , t) and the daily outliers
ε̃, it is possible to iterate the process by first recomputing the ki using the
median over a more stable set of stations. And afterward reevaluating the
different errors using a proxy µ̂s(t) defined on more stable stations.
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