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Least squares and leveraging

Given observations {(xi, yi) : i = 1, · · · , n}, define the OLS estimate β̂ as the minimizer of
n∑
i=1

(yi − xTi β)
2 = ‖y −Xβ‖2.

We will assume here that n and p = dim(β) are both very large with n � p. β̂ can be computed in
O(np2) time – prohibitive when n and p are very large.

To reduce the computational burden, we can take a random subsample of m � n observations and
define β̂ss to minimize ∑

i∈A
wi(yi − xTi β)

2

where A is the set of sampled indices and {wi} are some weights. The goal is to determine A and
{wi} so that ‖β̂ss − β̂‖ is small with high probability. (One may also want to examine the statistical
properties of β̂ss but that will not be pursued here.)

Algorithmic leveraging samples observations with probabilities proportional to the diagonals
h11, · · · , hnn of the hat matrix H = X(XTX)−1XT . This tends to produce a more informative
subsample than simple random sampling as illustrated by the plots given below in Figure 1 (for sim-
ple linear regression).
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Simple random sampling: n=1000, m=50
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Leverage sampling: n=1000, m=50

Figure 1: Subsamples drawn using simple random sampling and leverage samples; subsampled points are black. The
orange and black lines represent, respectively, the LS estimate using all the data and the LS estimate using only the
subsampled (black) points.

However, exact computation of {hii} has a similar computational complexity to that of computing
the OLS estimate β̂. The feasibility of leveraging relies on the fact that {hii} can be approximated
well (i.e. with ±ε relative error) in o(np2) time (Drineas et al., 2011; Drineas et al., 2012) using the
Fast Johnson-Lindenstrauss Transform (Ailon & Chazelle, 2009).

Leveraging gives us a multinomial vector

(m1, · · · ,mn) ∼ Mult
(
m;

h11
p
, · · · , hnn

p

)
representing the number of occurrences of each observation in the subsample; thusA = {i : mi ≥ 1}.
Two types of weighting are generally used:
•Unweighted leveraging: wi = mi for i ∈ A;
•Weighted leveraging: wi = mi/hii for i ∈ A.

The rationale for weighted leveraging is that it makes the objective function unbiased. Hybrid meth-
ods (e.g. convex combinations) can also be used.

Past research: Monte Carlo studies by Ma et al. (2015) and Ma & Sun (2015) indicate that un-
weighted leveraging tends to outperform weighted leveraging, particularly when the design contains
high leverage points (i.e. the distribution of {hii} is highly skewed to the right).

Leveraging and elemental estimates
Elemental estimates are estimates of β defined on subsets of p observations: If s = {i1, · · · , ip} is a
subset of {1, · · · , n} then the elemental estimate β̂s satisfies

xTj β̂s = yj for all j ∈ s.
Both the OLS and leveraging estimates can be written as expected values of elemental estimates with
respect to probability distributions defined on all subsets of p observations.

•OLS: β̂ =
∑
s

P(s)β̂s where P(s) =

∣∣∣∣∣∣
 hi1i1 hi1i2 · · · hi1ip

... ... . . . ...
hipi1 hipi2 · · · hipip

∣∣∣∣∣∣ for s = {i1, · · · , ip} where

{hij : i, j = 1, · · · , n} are the elements of the hat matrix (Subrahmanyam, 1972).

• Leveraging: β̂ss =
∑
s

Q(s)β̂s where Q(s) ∝ P(s)
p∏
j=1

wij for s = {i1, · · · , ip} ⊂ A with

Q(s) = 0 otherwise.

Proposition: For a given set A, the total variation (TV) distance dtv(Q,P) = 1
2

∑
s |Q(s) − P(s)|

is minimized for Q satisfying Q(s) = λ(s)P(s) with λ(s) ≥ 1 when s ⊂ A and λ(s) = 0 otherwise.
The minimum TV distance is 1− γ(A) where

γ(A) =

∣∣∣∣∣∣∣∣


1− hi1i1 −hi1i2 · · · −hi1i`
−hi2i1 1− hi2i2 · · · −hi2i`... ... . . . ...
−hi`i1 −hi`i2 · · · 1− hi`i`


∣∣∣∣∣∣∣∣ ≈ exp

−∑̀
j=1

hijij −
1

2

∑̀
j=1

∑̀
k=1

h2ijik


where {i1, · · · , i`} = Ac with ` =

n∑
i=1

I(mi = 0) ≈
n∑
i=1

exp(−mhii/p).

Corollary: A leveraging estimate attains the lower bound on the TV distance if, and only if,∏
j∈s

wj ≥ γ(A)
∑
u⊂A

P(u)γ(A)
∏
j∈u

wj

 = γ(A)
∑
u⊂A

PA(u)∏
j∈u

wj


for all s ⊂ A where PA = P/γ(A) is a probability distribution on subsets of A.

Some notes
1. γ(A) is monotone increasing in A: If A1 ⊂ A2 then γ(A1) ≤ γ(A2).

•We can use m∗ = n× {γ(A)}1/p as a (crude) measure of the effective subsample size.
• Is it worthwhile modifying the sampling procedure to try to maximize γ(A) for a fixed subsample

size m?
2. For general {wi}, the lower bound on the TV distance is attained provided that

∏
j∈swj is not too

variable for s ⊂ A.
3. For weighted leveraging (wi = mi/hii), the lower bound is not necessarily attained, especially if

the design contains high leverage points (i.e. some hii� p/n).
4. The lower bound is always attained when wi = 1 (for i ∈ A); this is similar to unweighted lever-

aging particularly if m is small compared to n.
• For larger m, simulations indicate that taking wi = 1 may be advantageous relative to other

options.

An illustration
Two designs with p = 100 and n = 100000 are considered:
•High leverage design: maxhii ≈ 40p/n.
• Low leverage design: maxhii ≈ 1.7p/n.

For a given subsampling estimate, we define the squared error SqErr = ‖β̂ss − β̂‖2. Figures 2 and 3
show the distribution (based on 1000 replications) of the ratio SqErr(unweighted)/SqErr(weighted)
for m = 200, 1000, 5000 for the two designs.
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Figure 2: High leverage design: SqErr(unweighted)/SqErr(weighted) for m = 200, 1000, 5000.
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Figure 3: Low leverage design: SqErr(unweighted)/SqErr(weighted) for m = 200, 1000, 5000.

The simulation results confirm the theoretical results:
• For the high leverage design, unweighted leveraging is clearly superior with the advantage increas-

ing with the subsample size.
• For the low leverage design, unweighted leveraging is still better although the advantage is less

definitive.
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