Profit Maximizing Logistic Regression Modeling for Credit Scoring

Arnout Devos^{1,2}, Jakob Dhondt³, Eugen Stripling², Bart Baesens^{2,4}, Seppe vanden Broucke², Gaurav Sukhatme¹ ¹USC, Los Angeles, USA - ²KU Leuven, Leuven, Belgium - ³Switch, Zurich, Switzerland - ⁴U of Southampton, Southampton, UK

Motivation

- 1. Credit imbalanced scoring is an classification problem in terms of costs (% of credit given) and benefits (interest).
- 2. Maximum profit = most important business requirement, so profit-based classifier evaluation metric has been developed: Expected Maximum Profit (EMP) [1].
- 3. EMP has been applied to customer churn model construction [2], but credit scoring lacks this and has regulatory restrictions (Basel II/III) on prediction models.

Idea

Use a logistic regression model (GLM) to model applicant x_i defaulting (y = 0) or not (y = 1) + satisfy regulatory restrictions:

$$P(Y = 0|x_i) = \frac{e^{\beta_0 + \beta^T x_i}}{1 + e^{\beta_0 + \beta^T x_i}}$$

Optimize parameters $\boldsymbol{\theta} = (\beta_0, \boldsymbol{\beta})$ using a • Genetic Algorithm (GA) with as fitness parametrized function the Expected Maximum Profit (EMP).

Classifier is more profitable than usual maximum likelihood logistic regression credit scoring models while satisfying regulatory restrictions.

VU	Ela	1 .	
del	AUC	Total Profit (\$)	Extra Profit (\$)
odel	0.5	1,851,022	0
	0.8077	2,427,683	576,661
MP	0.8068	2,501,595	650,573
	-46		101

del	AUC	Total Profit (\$)	Extra Profit (\$)	
nodel	0.5	-53,015	0	
	0.7819	6,883	59,898	
MP	0.7705	13,890	66,905	

LONCIUSION

Proposed classifier optimizes for maximum

profit in model construction.

Considers both costs AND benefits, contrary to cost-only classifiers.

Shows increased profit compared to maximum

likelihood logistic regression.

• Future work: Tree-based, AUC, H measure

[1] T. Verbraken, C. Bravo, R. Weber, and B. Baesens, "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research , vol. 238, no. 2, pp. 505 513, 2014.

[2] E. Stripling, S. vanden Broucke, K. Antonio, B. Baesens, and M. Snoeck, "Profit maximizing logistic model for customer churn prediction using genetic algorithms," Swarm and Evolutionary Computation, 2017.

> USC University of Southern California

KU LEUVEN