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Wasserstein Distance as Optimal Transport Distance

� Let µ and ν be two

probability measures on

a metric space (X , d)

� Π(µ, ν) = {probability

measures on X × X
with marginals µ and ν}

� π ∈ Π(µ, ν) is a

transport plan from ν

to µ.
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Wasserstein Distance as Optimal Transport Distance

� Let µ and ν be two

probability measures on

a metric space (X , d)

� Π(µ, ν) = {probability

measures on X × X
with marginals µ and ν}

� π ∈ Π(µ, ν) is a

transport plan from ν

to µ.

� π(A× B) = mass

transported from A to B
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Wasserstein Distance as Optimal Transport Distance

� incorporates ground

distance from the space

in question

� intuitive interpretation

as amount of ’work’ to

transform one

probability measure into

another

� performs exceptionally

well at capturing

human perception of

similarity

4/18



The Wasserstein Distance

Definition

a) The p-th Wasserstein distance (WD) between µ and ν is defined as

Wp(µ, ν) =

{
min

π∈Π(µ,ν)

∫
X×X

dp(x , y)dπ(x , y)

}1/p

where Π(µ, ν) are all probability measures on X × X with marginals

µ and ν (couplings).

b) X1, . . . ,Xn
i.i.d.∼ µ. The empirical Wasserstein distance (EWD) is

defined as

Wp(µ̂n, ν),

µ̂n empirical measure.

Same scheme for two sample case yields Wp(µ̂n, ν̂n).
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How to do inference?

Inference

We want to quantify the fluctuation behavior of Wp(µ̂n, ν) around

Wp(µ, ν). Typical questions are:

� testing whether two samples µ̂n and ν̂n stem from the same

distribution, i.e., Wp(µ̂n, ν̂n) = 0

� testing a given reference measure ν = ν0

� giving confidence statements for Wp(µ̂n, ν)
⇐=

=

Limit distributions
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Limit Theorems



The One Dimensional Case

In the case X = R and d(x , y) = |x − y | there is an explicit solution for

the Wasserstein distance:

Wp(µ, ν) =

{∫ 1

0

|F−1(t)− G−1(t)|pdt
}1/p

,

where F−1 and G−1 are the quantile functions of µ and ν, respectively.

⇐=
=

� for µ = ν asymptotic behavior of Wp(µ̂n, ν) boils down to analysis

of Lp-norm of quantile process, limit distribution can be

calculated explicitly, del Barrio et al. (1999, 2005), Samworth & Johnson (2004)

� for µ 6= ν limit is a centered normal with variance depending on µ

and ν which can be consistently estimated or bootstrapped,

Munk & Czado (1998), Freitag et al. (2007), Berthe et al. (2017)
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The General Case

� explicit solution known for elliptical distributions (e.g. multivariate

normal)

. µ 6= ν: normal limit, Rippl et al. (2016)

. µ = ν: explicit description of limit distribution difficult, limit

distribution can be bootstrapped (m out of n), Rippl et al. (2016)

� for general distributions (positive densities on convex support,

4 + δ moment) for µ 6= ν and p = 2 the limit is normal, del Barrio &

Loubes (2017)
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Discrete Spaces

In the case where X is a finite or countable space the Wasserstein

distance is a finite/infinite dimensional linear program.

Theorem (Sommerfeld, Munk & T.)

For µ = ν it holds for n→∞

n
1

2pWp(µ̂n, µ)
D−→
{

max
λ∈S∗(µ,µ)

〈G , λ〉
} 1

p

under the assumption that
∑

x∈X dp(x , x0)
√
µx < ∞ in the case that

X is countable.

� S∗(µ, µ) set of dual solutions � G Gaussian limit of
√
n(µ̂n − µ)
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Discrete Spaces (cont.)

The limit distribution {
max

λ∈S∗(µ,µ)
〈G , λ〉

} 1
p

� can not be calculated explicitly in general

� computational very demanding to sample from this limit

distribution as for each realization a linear program has to be solved
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Approximating the Limit Distri-

bution by Trees



Explicit Limiting Distribution for Tree Metrics

X = vertices of a tree T
dT = path length in T

x0 = root of T

root(T )

parent(x)

x(ST r)x

Theorem (Sommerfeld, Munk & T.)

Again under the condition
∑

x∈X dp(x , x0)
√
µx <∞ for countable X

n
1

2p Wp(µ̂n, µ)
D−→

{∑
x∈X
|(ST G )x |dT (x ,parent(x))p

} 1
p

.
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Distributional Bound for the Limiting Distribution

Upper bound:

Theorem (Sommerfeld, Munk & T.)

lim sup
n→∞

P
[
n1/2pWp(µ̂n, µ) ≥ z

]
≤ P [ZT ,p(G ) ≥ z ]

� ZT ,p(G ) =
{∑

x∈X |(ST G )x |dT (x ,parent(x))p
} 1

p

→ can be computed explicitly

� T spanning tree of X , i.e., a rooted tree with elements of X as

vertices and tree metric dT given by the length of the unique path

joining two elements

� G Gaussian limit as before
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Spanning Trees

(a) ’Chain’ (b)’Fork’ (c) ’Dyadic Partition’

Figure 1: Three different spanning trees on a 4× 4 grid. The black

rectangle depicts the unit square [0, 1]2, the dots indicate the locations which

represent the pixels, i.e., X (the vertices of the tree) and the red lines indicate

the edges.
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Probability Measures

We numerically investigate the upper bound

ZT ,p(G ) =

{∑
x∈X
|(ST G )x |dT (x ,parent(x))p

} 1
p

for the following probability distributions:

� uniform distribution

� random measure, i.e., a generalization of the Dirichlet distribution

� tow discretized bivariate Gaussians with mean (0.5, 0.5) and

covariances (
1 0

0 1

)
,

(
1 0.8

0.8 1

)
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The Discretized Gaussians

(a) Gaussian 1

0.008

0.010

0.012

0.014

0.016

0.018

0.020

(c) Gaussian 2

Figure 2: Discretized Gaussians. The probability weights of two discretized

Gaussians with mean (0.5, 0.5) and different covariances.
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Results I: Dependency on Measure on a 8× 8 Grid
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Results II: Dependency on Grid Size of Uniform Distribution
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(a) 8× 8 grid

0

5

10

15

20

0.25 0.50 0.75 1.00

D
en

si
ty

Chain
Dyadic
Fork
Limiting Distribution

(b) 16× 16 grid

0

10

20

30

40

0.25 0.50 0.75 1.00

D
en

si
ty

Chain
Dyadic
Fork
Limiting Distribution

(c) 32× 32 grid

17/18



Conclusion

� Review of limit results for the Wasserstein distance from a

computational point of view

� Investigated upper bound for limit distribution on finite and

countable spaces

. The spanning tree ’Fork’ gives the best approximation no

matter which measure

. Approximation better for small grid sizes

� Future research: Optimize the approximation for a given number of

nodes
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