

COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT

Axel Munk Carla Tameling

June 4, 2018

Institute for Mathematical Stochastics, University Göttingen

Wasserstein Distance as Optimal Transport Distance

- Let μ and ν be two probability measures on a metric space (X, d)
- Π(μ, ν) = {probability measures on X × X with marginals μ and ν}
- $\pi \in \Pi(\mu, \nu)$ is a transport plan from ν to μ .

Wasserstein Distance as Optimal Transport Distance

- Let μ and ν be two probability measures on a metric space (X, d)
- $\Pi(\mu,\nu) = \{\text{probability} \\ \text{measures on } \mathcal{X} \times \mathcal{X} \}$
 - with marginals μ and ν }
 - $\pi \in \Pi(\mu, \nu)$ is a transport plan from ν to μ .
 - $\pi(A \times B) = \text{mass}$ transported from A to B

Wasserstein Distance as Optimal Transport Distance

- incorporates ground distance from the space in question
- intuitive interpretation as amount of 'work' to transform one probability measure into another
- performs exceptionally well at capturing human perception of similarity

Definition

a) The p-th Wasserstein distance (WD) between μ and ν is defined as

$$W_{p}(\mu,\nu) = \left\{ \min_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{X}} d^{p}(x,y) d\pi(x,y) \right\}^{1/\mu}$$

where $\Pi(\mu, \nu)$ are all probability measures on $\mathcal{X} \times \mathcal{X}$ with marginals μ and ν (couplings).

b) $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mu$. The empirical Wasserstein distance (EWD) is defined as

$$W_p(\hat{\mu}_n, \nu),$$

 $\hat{\mu}_n$ empirical measure.

Same scheme for two sample case yields $W_p(\hat{\mu}_n, \hat{\nu}_n)$.

Inference

We want to quantify the **fluctuation behavior** of $W_p(\hat{\mu}_n, \nu)$ around $W_p(\mu, \nu)$. Typical questions are:

- testing whether two samples $\hat{\mu}_n$ and $\hat{\nu}_n$ stem from the same distribution, i.e., $W_p(\hat{\mu}_n, \hat{\nu}_n) = 0$
- \blacksquare testing a given reference measure $\nu=\nu_0$
- siving confidence statements for $W_p(\hat{\mu}_n, \nu)$

Limit distributions

Limit Theorems

The One Dimensional Case

In the case $\mathcal{X} = \mathbb{R}$ and d(x, y) = |x - y| there is an **explicit** solution for the Wasserstein distance:

$$W_p(\mu,\nu) = \left\{\int_0^1 |F^{-1}(t) - G^{-1}(t)|^p dt
ight\}^{1/p},$$

where F^{-1} and G^{-1} are the quantile functions of μ and ν , respectively.

- for $\mu = \nu$ asymptotic behavior of $W_p(\hat{\mu}_n, \nu)$ boils down to analysis of L_p -norm of quantile process, limit distribution can be calculated explicitly, del Barrio et al. (1999, 2005), Samworth & Johnson (2004)
- for μ ≠ ν limit is a centered normal with variance depending on μ and ν which can be consistently estimated or bootstrapped,
 Munk & Czado (1998), Freitag et al. (2007), Berthe et al. (2017)

- explicit solution known for elliptical distributions (e.g. multivariate normal)
 - $\triangleright \mu \neq \nu$: normal limit, Rippl et al. (2016)
 - $\triangleright \mu = \nu$: explicit description of limit distribution difficult, limit distribution can be **bootstrapped (m out of n)**, Rippl et al. (2016)
- for general distributions (positive densities on convex support, 4+ δ moment) for $\mu \neq \nu$ and p = 2 the limit is normal, del Barrio & Loubes (2017)

In the case where \mathcal{X} is a finite or countable space the Wasserstein distance is a finite/infinite dimensional linear program.

Theorem (Sommerfeld, Munk & T.) For $\mu = \nu$ it holds for $n \to \infty$ $n^{\frac{1}{2p}} W_p(\hat{\mu}_n, \mu) \xrightarrow{\mathscr{D}} \left\{ \max_{\lambda \in S^*(\mu, \mu)} \langle G, \lambda \rangle \right\}^{\frac{1}{p}}$ under the assumption that $\sum_{x \in \mathcal{X}} d^p(x, x_0) \sqrt{\mu_x} < \infty$ in the case that \mathcal{X} is countable.

• $S^*(\mu,\mu)$ set of dual solutions • G Gaussian limit of $\sqrt{n}(\hat{\mu}_n - \mu)$

The limit distribution

$$\left\{\max_{\lambda\in\mathcal{S}^{*}(\mu,\mu)}\left\langle G,\lambda\right\rangle\right\}^{\frac{1}{p}}$$

- can not be calculated explicitly in general
- computational very demanding to sample from this limit distribution as for each realization a linear program has to be solved

Approximating the Limit Distribution by Trees

Explicit Limiting Distribution for Tree Metrics

Theorem (Sommerfeld, Munk & T.)

Again under the condition $\sum_{x \in \mathcal{X}} d^p(x, x_0) \sqrt{\mu_x} < \infty$ for countable \mathcal{X}

$$n^{rac{1}{2p}}W_p(\hat{\mu}_n,\mu) \stackrel{\mathscr{D}}{\longrightarrow} \left\{ \sum_{x\in\mathcal{X}} |(S_\mathcal{T}G)_x| d_\mathcal{T}(x,\operatorname{parent}(x))^p
ight\}^{rac{1}{p}}$$

Upper bound:

Theorem (Sommerfeld, Munk & T.)

$$\limsup_{n\to\infty} P\left[n^{1/2p} W_p(\hat{\mu}_n,\mu) \ge z\right] \le P\left[Z_{\mathcal{T},p}(G) \ge z\right]$$

- $Z_{\mathcal{T},p}(G) = \left\{ \sum_{x \in \mathcal{X}} |(S_{\mathcal{T}}G)_x| d_{\mathcal{T}}(x, \operatorname{parent}(x))^p \right\}^{\frac{1}{p}}$ \rightarrow can be computed **explicitly**
- \mathcal{T} spanning tree of \mathcal{X} , i.e., a rooted tree with elements of \mathcal{X} as vertices and tree metric $d_{\mathcal{T}}$ given by the length of the unique path joining two elements
- G Gaussian limit as before

Figure 1: Three different spanning trees on a 4×4 grid. The black rectangle depicts the unit square $[0, 1]^2$, the dots indicate the locations which represent the pixels, i.e., \mathcal{X} (the vertices of the tree) and the red lines indicate the edges.

We numerically investigate the upper bound

$$Z_{\mathcal{T},p}(G) = \left\{ \sum_{x \in \mathcal{X}} |(S_{\mathcal{T}}G)_x| d_{\mathcal{T}}(x, \operatorname{parent}(x))^p \right\}^{\frac{1}{p}}$$

for the following probability distributions:

- uniform distribution
- **random** measure, i.e., a generalization of the Dirichlet distribution
- tow discretized bivariate Gaussians with mean (0.5, 0.5) and covariances

$$\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}1&0.8\\0.8&1\end{pmatrix}$$

(a) Gaussian 1 (c) Gaussian 2

Figure 2: Discretized Gaussians. The probability weights of two discretized Gaussians with mean (0.5, 0.5) and different covariances.

Results I: Dependency on Measure on a 8×8 Grid

(a) Uniform

(c) Gaussian 1

(b) Random

(d) Gaussian 2

Results II: Dependency on Grid Size of Uniform Distribution

(a) 8×8 grid

(b) 16×16 grid

(c) 32×32 grid

- Review of limit results for the Wasserstein distance from a computational point of view
- Investigated upper bound for limit distribution on finite and countable spaces
 - The spanning tree 'Fork' gives the best approximation no matter which measure
 - Approximation better for small grid sizes
- Future research: Optimize the approximation for a given number of nodes