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Wasserstein Distance as Optimal Transport Distance

= Let pand v be two
probability measures on
a metric space (X, d)

m M(u,v) = {probability
measures on X x X

with marginals x and v}

w7 eN(p,v)isa
transport plan from v
to u.
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Wasserstein Distance as Optimal Transport Distance

m Let p and v be two

H probability measures on
a metric space (X, d)

m [(p,v) = {probability
measures on X X X
with marginals 1 and v}

s e€N(p,v)isa
transport plan from v
to u.

m (A x B) = mass
transported from A to B
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Wasserstein Distance as Optimal Transport Distance

m incorporates ground

08 distance from the space
in question

m intuitive interpretation
as amount of 'work’ to
transform one
probability measure into
another

= performs exceptionally
well at capturing
human perception of

similarity
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The Wasserstein Distance

Definition

a) The p-th Wasserstein distance (WD) between p and v is defined as

1/p
Wo(p,v) = { min / dp(x7y)d7r(x,y)}
meN(u,v) Jxx x
where M(w, ) are all probability measures on X x X’ with marginals
w and v (couplings).
b) Xi,..., X, it . The empirical Wasserstein distance (EWD) is
defined as

Wp(ﬂm V)’

[1, empirical measure.
Same scheme for two sample case yields W, (fin, 7p).
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How to do inference?

Inference
We want to quantify the fluctuation behavior of W, (fi,, ) around
W, (1, v). Typical questions are:
m testing whether two samples [i, and 7, stem from the same
distribution, i.e., Wy(fin,?n) =0
m testing a given reference measure v = g

m giving confidence statements for W,(fi,, /)

!

Limit distributions
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Limit Theorems




The One Dimensional Case

In the case X =R and d(x,y) = |x — y| there is an explicit solution for
the Wasserstein distance:

Wo(u,v) = {/01 [FH(t) - G_l(f)l"dt}l/p,

where F~1 and G~! are the quantile functions of ; and v, respectively.

!

m for u = v asymptotic behavior of W,(ji,,v) boils down to analysis
of L,-norm of quantile process, limit distribution can be
calculated explicitly, del Barrio et al. (1999, 2005), Samworth & Johnson (2004)

m for u # v limit is a centered normal with variance depending on u
and v which can be consistently estimated or bootstrapped,
Munk & Czado (1998), Freitag et al. (2007), Berthe et al. (2017)
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The General Case

= explicit solution known for elliptical distributions (e.g. multivariate
normal)
> u # v: normal limit, Rippl et al. (2016)
> u = v: explicit description of limit distribution difficult, limit
distribution can be bootstrapped (m out of n), Rippl et al. (2016)
s for general distributions (positive densities on convex support,
4 + § moment) for u # v and p = 2 the limit is normal, del Barrio &
Loubes (2017)
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Discrete Spaces

In the case where X is a finite or countable space the Wasserstein
distance is a finite/infinite dimensional linear program.

Theorem (Sommerfeld, Munk & T.)
For ;n = v it holds for n — oo
P

1
n2p Wp(ﬁn,/t)%{ max (G,)\>}

AES™(p,pt)

under the assumption that > _ . dP(x,x0)\/lix < 00 in the case that

XEX
X is countable.

m S*(u, p) set of dual solutions m G Gaussian limit of v/n(fi, — )
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Discrete Spaces (cont.)

The limit distribution

{ max (G, \) } g
AES* (p,pt)

= can not be calculated explicitly in general

= computational very demanding to sample from this limit
distribution as for each realization a linear program has to be solved
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Approximating the Limit Distri-
bution by Trees




Explicit Limiting Distribution for Tree Metrics

/<r00t£7—)\
parent(x)
X = vertices of a tree T

dy = path length in T (S7r)x
Xo = root of T

Theorem (Sommerfeld, Munk & T.)
Again under the condition ) . dP(x,x0)\/lix < co for countable X

1

n% W (fin, 1) 2, {Z |(57—G)X|d7—(x,parent(x))p}" :

XEX
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Distributional Bound for the Limiting Distribution

Upper bound:
Theorem (Sommerfeld, Munk & T.)

lim sup P [nl/z” W, (fin, 1) > z} < P[Zr ,(G) > 7]

n— oo

T

w 77 5(G) = {Xsex |(S7G)xldr(x, parent(x))? }
— can be computed explicitly

m 7 spanning tree of X, i.e., a rooted tree with elements of X" as
vertices and tree metric dy given by the length of the unique path
joining two elements

m G Gaussian limit as before
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Spanning Trees

e { .
S iy
AN N\
(a) 'Chain’ (b)'Fork’ (c) 'Dyadic Partition’

Figure 1: Three different spanning trees on a 4 x 4 grid. The black
rectangle depicts the unit square [0, 1]?, the dots indicate the locations which
represent the pixels, i.e., X' (the vertices of the tree) and the red lines indicate
the edges.
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Probability Measures

We numerically investigate the upper bound

Z7p(G) = { > (576l dr(x, parent(X))”}

xeX
for the following probability distributions:
= uniform distribution

= random measure, i.e., a generalization of the Dirichlet distribution

m tow discretized bivariate Gaussians with mean (0.5,0.5) and

CHACY

covariances
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The Discretized Gaussians

(a) Gaussian 1 (c) Gaussian 2

Figure 2: Discretized Gaussians. The probability weights of two discretized

Gaussians with mean (0.5,0.5) and different covariances.
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Results I: Dependency on Measure on a 8 x 8 Grid

Density

Fork
Limiting Distribution

(c) Gaussian 1
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(d) Gaussian 2
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Results Il1: Dependency on Grid Size of Uniform Distribution
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Conclusion

m Review of limit results for the Wasserstein distance from a
computational point of view
= Investigated upper bound for limit distribution on finite and
countable spaces
> The spanning tree "Fork’ gives the best approximation no
matter which measure
> Approximation better for small grid sizes
m Future research: Optimize the approximation for a given number of
nodes
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