Subspace Clustering with Missing and Corrupted Data

Zachary Charles (UW-Madison)

Joint with Amin Jalali and Rebecca Willett (UW-Madison)

Recommender systems

amazon

How do we remove noise and fill in missing values?

We assume the data is inherently low rank.

- We assume the data is inherently low rank.
- Allows us to impute missing data with convex optimization. [Candès, Tao, 2009].

- We assume the data is inherently low rank.
- Allows us to impute missing data with convex optimization. [Candès, Tao, 2009].
- Extensions allow for missing data and noise. [Voltchinskii, 2011] [Klopp, 2012]

- We assume the data is inherently low rank.
- Allows us to impute missing data with convex optimization. [Candès, Tao, 2009].
- Extensions allow for missing data and noise. [Voltchinskii, 2011] [Klopp, 2012]

- We assume the data is inherently low rank.
- Allows us to impute missing data with convex optimization. [Candès, Tao, 2009].
- Extensions allow for missing data and noise. [Voltchinskii, 2011] [Klopp, 2012]

http://perception.csl.illinois.edu/matrix-rank/home.html

Issue: Most data is not low rank.

What if the data comes from a union of low-dimensional subspaces?

What if the data comes from a union of low-dimensional subspaces?

What if the data comes from a union of low-dimensional subspaces?

- Data matrix $X = Y + \overline{Z}$.
- Z =corruption matrix.

- ▶ Data matrix X = Y + Z.
- ightharpoonup Z = corruption matrix.
- $lackbox{Y}$ comes from a union of d-dimensional subspaces:

- ▶ Data matrix X = Y + Z.
- ightharpoonup Z = corruption matrix.
- ightharpoonup Y comes from a union of d-dimensional subspaces:

$$S_1 \cup S_2 \cup \cdots \cup S_L$$

- ▶ Data matrix X = Y + Z.
- ightharpoonup Z = corruption matrix.
- ightharpoonup Y comes from a union of d-dimensional subspaces:

$$S_1 \cup S_2 \cup \cdots \cup S_L$$

Cluster X by the subspaces, reduce to low-rank matrix completion.

- ▶ Data matrix X = Y + Z.
- ightharpoonup Z = corruption matrix.
- lacksquare Y comes from a union of d-dimensional subspaces:

$$S_1 \cup S_2 \cup \cdots \cup S_L$$

Cluster X by the subspaces, reduce to low-rank matrix completion.

New problem: Subspace clustering

▶ Key idea: self-expressivity [Elhamifar, Vidal, 2009].

- ▶ Key idea: self-expressivity [Elhamifar, Vidal, 2009].
- Each column is a sparse linear combination of other columns from the same subspace.

- Key idea: self-expressivity [Elhamifar, Vidal, 2009].
- Each column is a sparse linear combination of other columns from the same subspace.

Optimization formulation:

- Key idea: self-expressivity [Elhamifar, Vidal, 2009].
- Each column is a *sparse* linear combination of other columns from the same subspace.

Optimization formulation:

$$\min_{c} \|c\|_0 \text{ s.t. } x_i = X_c, \ c_i = 0$$

SSC [Elhamifar, Vidal, 2009]:

$$\min_{c} \|c\|_1 \text{ s.t. } x_i = X_c, \ c_i = 0$$

SSC [Elhamifar, Vidal, 2009]:

$$\min_{c} \|c\|_1 \text{ s.t. } x_i = X_c, \ c_i = 0$$

LS-SSC [Soltanolkotabi et al., 2014] [Wang, Xu, 2016]:

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

SSC [Elhamifar, Vidal, 2009]:

$$\min_{c} ||c||_1 \text{ s.t. } x_i = X_c, \ c_i = 0$$

LS-SSC [Soltanolkotabi et al., 2014] [Wang, Xu, 2016]:

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

- Prior work focused on the amount of noise this can tolerate.
- Success criteria: no false positives.

Main results

▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- d = O(n/# of samples).

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- d = O(n/# of samples).

Additive noise of norm δ

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- d = O(n/# of samples).

Additive noise of norm δ

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- $\rightarrow d = O(n/\# \text{ of samples})$.

- ▶ L d-dimensional randomly selected subspaces from \mathbb{R}^n .
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- $\rightarrow d = O(n/\# \text{ of samples}).$

	δ	M
Wang, Xu	O(1/d)	$O(n/d^2)^*$
C., Jalali, Willett	$O(1/\sqrt{d})$	O(n/d)

We guarantee success for additive noise bounded by:

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).
 - The distribution of points in a subspace (inradius).

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).
 - ▶ The distribution of points in a subspace (inradius).
- Novel subspace incoherence definition leads to better bounds.

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).
 - ▶ The distribution of points in a subspace (inradius).
- Novel subspace incoherence definition leads to better bounds.

Extend additive noise case to missing data.

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).
 - ▶ The distribution of points in a subspace (inradius).
- Novel subspace incoherence definition leads to better bounds.

- Extend additive noise case to missing data.
 - Randomly zeroing out entries \equiv projecting on to random axis-aligned subspaces.

- We guarantee success for additive noise bounded by:
 - ▶ The alignment of the subspaces (subspace incoherence).
 - ▶ The distribution of points in a subspace (inradius).
- Novel subspace incoherence definition leads to better bounds.

- Extend additive noise case to missing data.
 - Randomly zeroing out entries = projecting on to random axis-aligned subspaces.
 - Apply Johnson-Lindenstrauss style results.

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Dual:
$$\max_{\nu}\langle x,\nu\rangle - \frac{1}{2\lambda}\|\nu\|_2^2 \ s.t. \ \|A^T\nu\|_{\infty} \leq 1$$

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Dual:
$$\max_{\nu}\langle x,\nu\rangle - \frac{1}{2\lambda}\|\nu\|_2^2 \ s.t. \ \|A^T\nu\|_{\infty} \leq 1$$

$$\nu/\|\nu\|_2 = \text{Dual direction}$$

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Dual:
$$\max_{\nu} \langle x, \nu \rangle - \frac{1}{2\lambda} \|\nu\|_2^2 \ s.t. \ \|A^T \nu\|_{\infty} \le 1$$

$$\nu/\|\nu\|_2 = \text{Dual direction}$$

Our subspace incoherence: Maximum inner product of the dual vectors and the uncorrupted samples.

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Dual:
$$\max_{\nu} \langle x, \nu \rangle - \frac{1}{2\lambda} \|\nu\|_2^2 \ s.t. \ \|A^T \nu\|_{\infty} \le 1$$

$$\nu/\|\nu\|_2 = \text{Dual direction}$$

Our subspace incoherence: Maximum inner product of the dual vectors and the uncorrupted samples.

Prior subspace incoherence: Maximum inner product of the projected dual vectors and the uncorrupted samples.

Primal:
$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2$$

Dual:
$$\max_{\nu} \langle x, \nu \rangle - \frac{1}{2\lambda} \|\nu\|_2^2 \ s.t. \ \|A^T \nu\|_{\infty} \le 1$$

$$\nu/\|\nu\|_2 = \text{Dual direction}$$

Our subspace incoherence: Maximum inner product of the dual vectors and the uncorrupted samples.

Prior subspace incoherence: Maximum inner product of the projected dual vectors and the uncorrupted samples.

By avoiding projection, we can better measure the affinity between the corrupted and the true subspaces.

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

▶ LS-SSC can be used location agnostically.

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

Assume missing entries are set to zero.

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

- Assume missing entries are set to zero.
- Zeros may be a observed zeros or missing.

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

- Assume missing entries are set to zero.
- Zeros may be a observed zeros or missing.
- Allows use in presence-only data settings:

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

- Assume missing entries are set to zero.
- Zeros may be a observed zeros or missing.
- Allows use in presence-only data settings:
 - Population sampling.

$$\min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2$$

- Assume missing entries are set to zero.
- Zeros may be a observed zeros or missing.
- Allows use in presence-only data settings:
 - Population sampling.
 - Disease screening.

Low rank assumptions may not hold true in general.

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

Open problems:

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

Open problems:

How do we guarantee clustering accuracy?

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

Open problems:

- How do we guarantee clustering accuracy?
- Information-theoretic limits?

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

Open problems:

- How do we guarantee clustering accuracy?
- Information-theoretic limits?
- What about unions of low-dimensional non-linear spaces?

Fin.