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Real data is messy (or missing)

How do we remove noise and fill in missing
values?
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Issue: Most data i1s not low rank.
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» Datamatrix X =Y + Z.

» / = corruption matrix.

» Y comes from a union of d-dimensional subspaces:
S1USyU---uUSy

» Cluster X by the subspaces, reduce to low-rank matrix
completion.
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Sparse subspace clustering (SSC):

» SSC [Elhamifar, Vidal, 2009]:

min ||c||; s.t. x; = X¢, ¢; =0
C

» LS-SSC [Soltanolkotabi et al., 2014] [Wang, Xu, 2016]:

, A
min [|cfly + S| Xe— 25

» Prior work focused on the amount of noise this can tolerate.

» Success criteria: no false positives.
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» L d—dimensional randomly selected subspaces from R™.

» Q2(d) samples are drawn randomly on the unit sphere from
each subspace.

» d = O(n/# of samples).
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» We guarantee success for additive noise bounded by:
» The alignment of the subspaces (subspace incoherence).
» The distribution of points in a subspace (inradius).

» Novel subspace incoherence definition leads to better
bounds.

» Extend additive noise case to missing data.

» Randomly zeroing out entries = projecting on to random
axis-aligned subspaces.

» Apply Johnson-Lindenstrauss style results.
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Subspace incoherence

, A
Primal: min [|cf|; + §HAC — 2|3
1
Dual: max(x, V) — 5HVH§ sit. [J[ATV|e < 1

v/||v||2 = Dual direction

Our subspace incoherence: Maximum inner product of the
dual vectors and the uncorrupted samples.

Prior subspace incoherence: Maximum inner product of the
projected dual vectors and the uncorrupted samples.

By avoiding projection, we can better measure the affinity
between the corrupted and the true subspaces.
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Contributions

» LS-SSC can be used location agnostically.
. A )
min [ef|1 + ]| Xe — i3

» Assume missing entries are set to zero.

» Zeros may be a observed zeros or missing.

» Allows use In presence-only data settings:
» Population sampling.

» Disease screening.
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Conclusion

» Low rank assumptions may not hold true in general.
» Union of subspaces model can explain full rank data.

» Convex analysis, high-dimensional statistics can guarantee
subspace clustering methods succeed.

Open problems:
» How do we guarantee clustering accuracy?
» Information-theoretic limits?

» What about unions of low-dimensional non-linear spaces?






