

Convolutional Neural Networks via Node-Varying Graph Filters

Fernando Gama, Geert Leus, Antonio G. Marques & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering University of Pennsylvania fgama@seas.upenn.edu

IEEE Data Science Workshop (DSW), June 6, 2018

- Information processing architecture \Rightarrow Meaningful representation of data
- Remarkable performance in classification and regression tasks
 - \Rightarrow Image classification (images) \Rightarrow Speech recognition (time)

 - \Rightarrow Object recognition (images) \Rightarrow Game playing (time and images)
- Architecture parameters efficiently learned from training data
- \blacktriangleright Concatenation of simple layers \Rightarrow Convolution, pooling, nonlinearity \Rightarrow Convolution and pooling only defined on regular domains

Data on irregular domains: Graph signals

• Time and images \Rightarrow Information related by regular structure (grid)

Many datasets present alternative structures (irregular)

Encode arbitrary pairwise relationships between data elements
 ⇒ Graph signals (data supported on the nodes of a graph)
 ⇒ Incorporate the underlying irregular structure into processing

Convolutional Neural Networks for Graphs

- ► Existing CNNs ⇒ Remarkable performance in processing regular data ⇒ Convolution, pooling need a regular, multi-resolution domain
- \blacktriangleright Generalize CNNs to enable processing of signals supported on graphs
 - \Rightarrow Convolution \Rightarrow Linear shift-invariant graph filters [Bruna '14]
 - \Rightarrow Pooling \Rightarrow Create new graph \Rightarrow Clustering [Defferrard '17]
- ► GNN architectures defined on the original graph [Gama '18]
- ▶ Resolution change via shifts ⇒ Node-variant graph filters [Segarra '17]
 ⇒ Distribute features across the nodes of the original graph
 ⇒ No increase in dimension ⇒ No need for pooling

Input

F. Gama

NVGF

Clustering

Signals Supported on Graphs (Graph Signals)

► Network structure ⇒ Graph matrix S (Adjacency A, Laplacian L)

 \Rightarrow [**S**]_{*ij*} = Relationship between *i* and *j* (underlying graph support)

- Define a signal **x** on top of the graph \Rightarrow [**x**]_{*i*} = Signal value at node *i*
- Graph Signal Processing \Rightarrow Exploit structure encoded in **S** to process **x**
- Discrete time \Rightarrow Cyclic graph \Rightarrow Time *n* follows time n-1
- ▶ Random signals \Rightarrow Covariance graph \Rightarrow Correlation between elements

Cycle ⇒ Shift operator S acts as an actual shift ⇒ [Sx]_n = [x]_{n+1}
 ⇒ Analogy to convolution operation to define a filter

$$\mathbf{y} = h_1 \mathbf{S}^0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + \ldots + h_L \mathbf{S}^L \mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} := \mathbf{H} \mathbf{x}$$

- ▶ Sx local operation \Rightarrow Hx succession of (K-1) local operations
- ▶ The filter H is linear shift invariant \Rightarrow H(Sx) = S(Hx) = Sy
- Linear shift invariant filters generalize linear time invariant filters
 Generalize convolutional features in convolutional neural networks

$$x \longrightarrow Filter H \longrightarrow y$$

Neural Networks (NNs)

- ▶ Consider a training set $\mathcal{T} = \{(\mathbf{x}, \mathbf{y})\}$ with input-output pairs (\mathbf{x}, \mathbf{y})
- \blacktriangleright Learning = Estimate output $\hat{\boldsymbol{y}}$ associated with input $\boldsymbol{x} \notin \mathcal{T}$

 \Rightarrow Devise alternative representations of the dataset

► NNs stack layers composing pointwise nonlinearities with linear transforms (input x₀ = x and output ŷ = x_L)

$$\mathbf{x}_1 = \sigma_1 \Big(\mathbf{A}_1 \mathbf{x} \Big), \ \dots, \ \mathbf{x}_\ell = \sigma_\ell \Big(\mathbf{A}_\ell \mathbf{x}_{\ell-1} \Big), \ \dots, \ \mathbf{x}_L = \sigma_L \Big(\mathbf{A}_L \mathbf{x}_{L-1} \Big)$$

 $\Rightarrow \mathbf{x}_{\ell} \text{ of dimension } M_{\ell} \ \Rightarrow \mathbf{A}_{\ell} \text{ of dimension } M_{\ell-1}M_{\ell}$

- Use \mathcal{T} to find $\{\mathbf{A}_{\ell}\}$ that optimize loss function $\sum_{\mathcal{T}} f(\mathbf{y}, \mathbf{x}_L)$
- ► NNs are over-parametrized ⇒ Difficult to train. Do not generalize ⇒ Number of parameters to learn depends on data dimension
- CNNs regularize parameterization with convolution and pooling

Convolutional (C) Neural Networks (NNs)

- Linear transform \Rightarrow Convolution with bank of filters
 - \Rightarrow K_{ℓ} : support of filters \Rightarrow Independent of data dimension
 - \Rightarrow Compute several features for a more expressive formulation
- ▶ \mathbf{x}_{ℓ} are F_{ℓ} features of dimension $N_{\ell} \Rightarrow M_{\ell} = F_{\ell}N_{\ell}$
- ▶ Number of parameters to learn: $K_{\ell}F_{\ell}F_{\ell-1} \Rightarrow$ Independent of N_{ℓ}
- ► Dimension of data: $F_{\ell}N_{\ell} \Rightarrow \text{If } F_{\ell} \text{ increases, decrease } N_{\ell}$ $\Rightarrow \text{Pooling computes summaries} \Rightarrow \text{Decrease dimension} \Rightarrow N_{\ell} \le N_{\ell-1}$
- Convolution \Rightarrow Bank of linear shift-invariant graph filters
- Pooling \Rightarrow Multiscale hierarchical clustering \Rightarrow Smaller graphs

Node-Variant Graph Filters

- Clustering \Rightarrow Open problem \Rightarrow Difficult to determine a *good* cluster
- ► Avoid increasing dimensionality by using one filter per layer (F_ℓ = 1) ⇒ Expressiveness? Node-variant graph filter (NVGF)
- ► NVGF: $\mathbf{H}^{nv} = \sum_{k=0}^{K-1} \operatorname{diag}(\mathbf{h}_k) \mathbf{S}^k \Rightarrow [\mathbf{h}_k]_n$: coefficient at node n $\Rightarrow \mathbf{x}_{\ell} = \mathbf{H}_{\ell}^{nv} \mathbf{x}_{\ell-1} \Rightarrow$ Dimension of data is constant at every layer \Rightarrow Distribute features across the original graph

- \blacktriangleright NVGF $\ \Rightarrow$ Dimension of data remains constant at each layer
- ► Number of learnable parameters: ∑^L_{ℓ=1} NK_ℓ ⇒ Depends on N ⇒ Undesirable for large graphs ⇒ Hybrid NVGF
- C_B ∈ {0,1}^{N×B}: tall binary matrix (N ≫ B) such that C_B1_B = 1_N
 h_{B,k} ∈ ℝ^B: reduced vector of B filter coefficients

$$\mathbf{H}^{\mathsf{h}} = \sum_{k=0}^{K-1} \mathsf{diag}(\mathsf{C}_{\mathcal{B}}\mathbf{h}_{\mathcal{B},k})\mathbf{S}^{k}$$

 \Rightarrow B = N, $C_{B} = I \Rightarrow$ node-variant; $B = 1 \Rightarrow$ node-invariant

- ▶ $C_{\mathcal{B}}$: cols. indicate membership; $h_{\mathcal{B},k}$: common coeff. for each group
- ▶ Number of learnable parameters: $\sum_{\ell=1}^{L} BK_{\ell} \Rightarrow$ Independent of N

Hybrid NVGF CNN

- 1: procedure NVGF_CNN($\{x\}, \mathcal{T}, S, \{K_1, \ldots, K_{L-1}\}, B$)
- 2: Create set \mathcal{B} by selecting B nodes with highest degree
- 3: Compute $C_{\mathcal{B}}$ (see below)
- 4: Create the L-1 layers:
- 5: **for** $\ell = 1 : L 1$ **do**
- 6: Create *B* filter taps $\{\mathbf{h}_{\mathcal{B},0},\ldots,\mathbf{h}_{\mathcal{B},\mathcal{K}_{\ell}-1}\}$
- 7: Obtain $\mathbf{H}^{\mathsf{h}}_{\ell} = \sum_{k=0}^{K_{\ell}-1} \operatorname{diag}(\mathsf{C}_{\mathcal{B}}\mathbf{h}_{\mathcal{B},k})\mathbf{S}^{k}$
- 8: Apply non-linearity $\sigma_{\ell}(\mathbf{H}^{\mathsf{h}}_{\ell} \cdot)$
- 9: end for
- 10: Create readout layer
- 11: Learn $\{\mathbf{h}_{\mathcal{B},0},\ldots,\mathbf{h}_{\mathcal{B},\mathcal{K}_{\ell-1}}\}_{\ell=1}^{L-1}$ from \mathcal{T}
- 12: Estimate output $\hat{\mathbf{y}}$ for $\mathbf{x} \notin \mathcal{T}$
- 13: end procedure
- ► $\mathcal{B} = \{v_1, ..., v_B\}$: *B* nodes with highest degree $\Rightarrow [\mathbf{C}_{\mathcal{B}}]_{v_b, b} = 1$ $\Rightarrow i \notin \mathcal{B}$: $[\mathbf{C}_{\mathcal{B}}]_{ij} = 1$ if $j \in \operatorname{argmax}_{b:v_b \in \mathcal{B}}\{w_{i, v_b}\}$
- Other assignment schemes, other expansion models are possible

- Consider Erdős-Rényi (ER) graph with N = 15 nodes, $p_{\text{ER}} = 0.4$
- Assume node c started a diffusion at time t = 0
 - \Rightarrow Graph signal δ_c has 1 in node c and zeros elsewhere
- Consider observations $\mathbf{x} = \mathbf{A}^t \boldsymbol{\delta}_c$ for some unknown t > 0
- Localize the node c that originated the diffusion
- Test samples have white noise with σ_w^2 (training set is noiseless)
- Architectures tested are comprised of the following layers
 ⇒ FC[m]: fully connected layer with m hidden units
 ⇒ GC[K, F]: Chebyshev layer, K: length of filters, F: features
 ⇒ GL[K, B]: H-NVGF layer, K: length of filters, B: selected nodes
 Architectures include a (fully-connected) readout layer (not shown)

Varying number of selected nodes B

▶ Performance of H-NVGF CNN improves when B increases ⇒ Still for B = N few parameters and best performance

Source Localization: Length of Filter

► Varying length of filter K

► Performance of H-NVGF CNN improves when K increases ⇒ After K ≥ 8, two layers are enough to gather all information

• Varying noise power σ_w^2 in the test samples

Drop of 5% across 5 orders of magnitude

- Comparative analysis of the four architectures
- ▶ H-NVGF best performance with 10 times less parameters

Architecture	Parameters	Accuracy
FC[2500]	77, 515	72.6%
GC[5, 32]	7,407	87.2%
GC[5, 32]-FC[100]	49,807	84.3%
GL[10, 15]-GL[10, 15]	542	88.9%

- Consider news articles that can be classified in 20 categories
- Model articles through a bag-of-words approach
- Graph support based on word2vec embedding, N = 3,000 nodes
- ► Comparable performance with almost 100 times less parameters

Architecture	Parameters	Accuracy
GC[5, 32]	1,920,212	60.75%
GL[5, 1500]	67, 521	60.34%

- Proposed CNN architecture that operates on graph signals
- ► Convolution stage replaced by a node-varying graph filter ⇒ No need for pooling (no need for clustering)
- E constitución o Necleo del televisión de Cherces (Cat
- Expressiveness \Rightarrow Nodes with independent filter coefficients
- Multi-resolution analysis is adjusted by length of graph filters
- ► Hybrid NVGF ⇒ Number of parameters independent of data dimension
- ► Tested on synthetic source localization and also 20NEWS dataset ⇒ Similar performance with 10 to almost 100 less parameters