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Convolutional Neural Networks (CNNs)

v

Information processing architecture = Meaningful representation of data

v

Remarkable performance in classification and regression tasks

= Image classification = Speech recognition
= Object recognition = Game playing

v

Architecture parameters efficiently learned from training data

v

Concatenation of simple layers =- Convolution, pooling, nonlinearity
= Convolution and pooling only defined on regular domains
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Data on irregular domains: Graph signals

» Time and images = Information related by regular structure

» Many datasets present alternative structures
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» Encode arbitrary pairwise relationships between data elements
= Graph signals (data supported on the nodes of a graph)
= Incorporate the underlying irregular structure into processing
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Convolutional Neural Networks for Graphs

» Existing CNNs =- Remarkable performance in processing regular data

= Convolution, pooling need a regular, multi-resolution domain

» Generalize CNNs to enable processing of signals supported on graphs
= Convolution = Linear shift-invariant graph filters [Bruna '14]
= Pooling = Create new graph = Clustering [Defferrard '17]

» GNN architectures defined on the original graph [Gama '18]

» Resolution change via shifts = Node-variant graph filters [Segarra '17]
= Distribute features across the nodes of the original graph

= No increase in dimension = No need for pooling
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Signals Supported on Graphs (Graph Signals)

» Network structure = Graph matrix S
= [S];; = Relationship between i and j
» Define a signal x on top of the graph =- [x]; = Signal value at node i

v

Graph Signal Processing = Exploit structure encoded in S to process x

v

Discrete time = Cyclic graph = Time n follows time n — 1

v

Random signals = Covariance graph = Correlation between elements
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General graph Cyclic graph Covariance graph
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Linear Shift Invariant Graph Filters

v

Cycle = Shift operator S acts as an actual shift = [Sx], = [X]s+1

= Analogy to convolution operation to define a filter

K—1
y = b x+mS x4+ mS?x+...+ hStx = thskx = Hx
k=0

v

Sx local operation = Hx succession of (K — 1) local operations
The filter H is linear shift invariant = H(Sx) = S(Hx) = Sy

v

v

Linear shift invariant filters generalize linear time invariant filters

= Generalize convolutional features in convolutional neural networks
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Neural Networks (NNs)

F. Gama

Consider a training set 7 = {(x,y)} with input-output pairs (x,y)
Learning = Estimate output ¥ associated with input x ¢ T

= Devise alternative representations of the dataset

NNs stack layers composing pointwise nonlinearities with
linear transforms

X1 :Ul<A1X), ey Xz:O'g<Ang,1>7 ey XL.:UL<ALXL,1)

= xy of dimension M, = A, of dimension M,_1 M,
Use T to find {A,} that optimize loss function >, f(y,x.)

NNs are over-parametrized =- Difficult to train. Do not generalize

= Number of parameters to learn depends on data dimension

CNNs regularize parameterization with convolution and pooling
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Convolutional (C) Neural Networks (NNs)

» Linear transform =- Convolution with bank of filters
= Kj: support of filters = Independent of data dimension

= Compute several features for a more expressive formulation

v

xy are Fy features of dimension Ny = M, = F;N,

v

Number of parameters to learn: K;FyF;_1 = Independent of N,

v

Dimension of data: F;N, = If F, increases, decrease N,

= Pooling computes summaries = Decrease dimension = N, < N, 4

v

Convolution = Bank of linear shift-invariant graph filters

v

Pooling =- Multiscale hierarchical clustering = Smaller graphs

Input Layer 1 Layer 2
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Node-Variant Graph Filters

» Clustering = Open problem = Difficult to determine a good cluster
» Avoid increasing dimensionality by using one filter per layer (F, = 1)

= Expressiveness? Node-variant graph filter (NVGF)

» NVGF: H™ = f;ol diag(hx)S* = [hy],: coefficient at node n
= x; = H}xy—_1 = Dimension of data is constant at every layer

= Distribute features across the original graph
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Hybrid Node-Variant Graph Filters

» NVGF = Dimension of data remains constant at each layer
» Number of learnable parameters: 25:1 NK; = Depends on N
= Undesirable for large graphs = Hybrid NVGF

» Cp € {0,1}V*B: tall binary matrix (N > B) such that Cslg = 1y
> hp € RE: reduced vector of B filter coefficients

K-1

Hh = Z diag(Cshp x)S*
k=0

= B =N, Cz = | = node-variant; B =1 = node-invariant

» Cp: cols. indicate membership; hg x: common coeff. for each group

» Number of learnable parameters: Zézl BK; = Independent of N
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Hybrid NVGF CNN

1: procedure NVGF_ONN({x}, 7, S, {K1,...,Ki_1}, B)
2: Create set B by selecting B nodes with highest degree
3 Compute Cp

4: Create the L — 1 layers:
5: for{=1:L—1do
6.

7

8

Create B filter taps {hg0,...,hgk,~1}
Obtain HY = 37" diag(Cshys 4)SK
: Apply non-linearity O’g(Hz )
9: end for
10: Create readout layer
11: Learn {hB,o,...,hB7K£71}é;11 from T

12: Estimate output § for x ¢ T
13: end procedure

» B={w,...,ve}: B nodes with highest degree = [Cg],, » =1
= i ¢ B: [Cplj =1if j € argmaxy,,, csi{Wi,}
» Other assignment schemes, other expansion models are possible
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Numerical Experiments: Source Localization

» Consider Erd6s-Rényi (ER) graph with N = 15 nodes, pgr = 0.4
» Assume node c started a diffusion at time t =0
= Graph signal d. has 1 in node ¢ and zeros elsewhere
» Consider observations x = A!d. for some unknown t > 0
» Localize the node ¢ that originated the diffusion

» Test samples have white noise with o2,

» Architectures tested are comprised of the following layers
= FC[m]: fully connected layer with m hidden units
= GC[K, F]: Chebyshev layer, K: length of filters, F: features
= GL[K, B]: H-NVGF layer, K: length of filters, B: selected nodes

» Architectures include a (fully-connected) readout layer
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Accuracy
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» Performance of H-NVGF CNN improves when B increases

= Still for B = N few parameters and best performance
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Source Localization: Le

» Varying length of filter K
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» Performance of H-NVGF CNN improves when K increases

= After K > 8, two layers are enough to gather all information
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Source Localization: Noise Power

» Varying noise power o2, in the test samples
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» Drop of 5% across 5 orders of magnitude
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Source Localization: Comparative Analysis

» Comparative analysis of the four architectures

» H-NVGF best performance with 10 times less parameters

Architecture Parameters  Accuracy
FC[2500] 77,515 72.6%
GCJ[5, 32] 7,407  87.2%
GCI5, 32]-FC[100] 49,807  84.3%
GLJ[10, 15]-GL[10, 15] 542  88.9%
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Numerical Experiments: 20NEWS Dataset

v

Consider news articles that can be classified in 20 categories

v

Model articles through a bag-of-words approach

v

Graph support based on word2vec embedding, N = 3,000 nodes

v

Comparable performance with almost 100 times less parameters

Architecture  Parameters  Accuracy
GC[5,32] 1,920,212  60.75%
GL[5,1500] 67,521  60.34%
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Conclusions

» Proposed CNN architecture that operates on graph signals
» Convolution stage replaced by a node-varying graph filter
= No need for pooling

» Expressiveness =- Nodes with independent filter coefficients

» Multi-resolution analysis is adjusted by length of graph filters

v

Hybrid NVGF = Number of parameters independent of data dimension

v

Tested on synthetic source localization and also 20NEWS dataset

= Similar performance with 10 to almost 100 less parameters
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