
Convolutional Neural Networks
via Node-Varying Graph Filters

Fernando Gama, Geert Leus,
Antonio G. Marques & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering
University of Pennsylvania

fgama@seas.upenn.edu

IEEE Data Science Workshop (DSW), June 6, 2018

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 1/18

mailto:fgama@seas.upenn.edu


Convolutional Neural Networks (CNNs)

I Information processing architecture ⇒ Meaningful representation of data

I Remarkable performance in classification and regression tasks

⇒ Image classification (images) ⇒ Speech recognition (time)
⇒ Object recognition (images) ⇒ Game playing (time and images)

I Architecture parameters efficiently learned from training data

I Concatenation of simple layers ⇒ Convolution, pooling, nonlinearity

⇒ Convolution and pooling only defined on regular domains

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 2/18



Data on irregular domains: Graph signals

I Time and images ⇒ Information related by regular structure (grid)

I Many datasets present alternative structures (irregular)

I Encode arbitrary pairwise relationships between data elements

⇒ Graph signals (data supported on the nodes of a graph)

⇒ Incorporate the underlying irregular structure into processing

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 3/18



Convolutional Neural Networks for Graphs

I Existing CNNs ⇒ Remarkable performance in processing regular data

⇒ Convolution, pooling need a regular, multi-resolution domain

I Generalize CNNs to enable processing of signals supported on graphs

⇒ Convolution ⇒ Linear shift-invariant graph filters [Bruna ’14]

⇒ Pooling ⇒ Create new graph ⇒ Clustering [Defferrard ’17]

I GNN architectures defined on the original graph [Gama ’18]

I Resolution change via shifts ⇒ Node-variant graph filters [Segarra ’17]

⇒ Distribute features across the nodes of the original graph

⇒ No increase in dimension ⇒ No need for pooling

Input Clustering NVGF

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 4/18



Signals Supported on Graphs (Graph Signals)

I Network structure ⇒ Graph matrix S (Adjacency A, Laplacian L)

⇒ [S]ij = Relationship between i and j (underlying graph support)

I Define a signal x on top of the graph ⇒ [x]i = Signal value at node i

I Graph Signal Processing ⇒ Exploit structure encoded in S to process x

I Discrete time ⇒ Cyclic graph ⇒ Time n follows time n − 1

I Random signals ⇒ Covariance graph ⇒ Correlation between elements

2

3

1

4

5

x1

x2

x3

x4

x5

General graph

1

2

3

4

5

6

x1

x2

x3

x4

x5

x6

Cyclic graph

1

2

3

4

5

6

x1

x2

x3

x4

x5

x6

σ12σ16

σ13σ15

σ43σ45

Covariance graph

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 5/18



Linear Shift Invariant Graph Filters

I Cycle ⇒ Shift operator S acts as an actual shift ⇒ [Sx]n = [x]n+1

⇒ Analogy to convolution operation to define a filter

y = h1S
0x + h1S

1x + h2S
2x + . . .+ hLS

Lx =
K−1∑
k=0

hkS
kx := Hx

I Sx local operation ⇒ Hx succession of (K − 1) local operations

I The filter H is linear shift invariant ⇒ H(Sx) = S(Hx) = Sy

I Linear shift invariant filters generalize linear time invariant filters

⇒ Generalize convolutional features in convolutional neural networks

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 6/18



Neural Networks (NNs)

I Consider a training set T = {(x, y)} with input-output pairs (x, y)

I Learning = Estimate output ŷ associated with input x /∈ T
⇒ Devise alternative representations of the dataset

I NNs stack layers composing pointwise nonlinearities with
linear transforms (input x0 = x and output ŷ = xL)

x1 = σ1

(
A1x

)
, . . . , x` = σ`

(
A`x`−1

)
, . . . , xL. = σL

(
ALxL−1

)
⇒ x` of dimension M` ⇒ A` of dimension M`−1M`

I Use T to find {A`} that optimize loss function
∑
T f (y, xL)

I NNs are over-parametrized ⇒ Difficult to train. Do not generalize

⇒ Number of parameters to learn depends on data dimension

I CNNs regularize parameterization with convolution and pooling

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 7/18



Convolutional (C) Neural Networks (NNs)

I Linear transform ⇒ Convolution with bank of filters

⇒ K`: support of filters ⇒ Independent of data dimension

⇒ Compute several features for a more expressive formulation

I x` are F` features of dimension N` ⇒ M` = F`N`

I Number of parameters to learn: K`F`F`−1 ⇒ Independent of N`
I Dimension of data: F`N` ⇒ If F` increases, decrease N`

⇒ Pooling computes summaries ⇒ Decrease dimension ⇒ N` ≤ N`−1

I Convolution ⇒ Bank of linear shift-invariant graph filters

I Pooling ⇒ Multiscale hierarchical clustering ⇒ Smaller graphs

Input Layer 1 Layer 2

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 8/18



Node-Variant Graph Filters

I Clustering ⇒ Open problem ⇒ Difficult to determine a good cluster

I Avoid increasing dimensionality by using one filter per layer (F` = 1)

⇒ Expressiveness? Node-variant graph filter (NVGF)

I NVGF: Hnv =
∑K−1

k=0 diag(hk)Sk ⇒ [hk ]n: coefficient at node n

⇒ x` = Hnv
` x`−1 ⇒ Dimension of data is constant at every layer

⇒ Distribute features across the original graph

Input
Clustering

NVGF

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 9/18



Hybrid Node-Variant Graph Filters

I NVGF ⇒ Dimension of data remains constant at each layer

I Number of learnable parameters:
∑L
`=1 NK` ⇒ Depends on N

⇒ Undesirable for large graphs ⇒ Hybrid NVGF

I CB ∈ {0, 1}N×B : tall binary matrix (N � B) such that CB1B = 1N
I hB,k ∈ RB : reduced vector of B filter coefficients

Hh =
K−1∑
k=0

diag(CBhB,k)Sk

⇒ B = N, CB = I ⇒ node-variant; B = 1 ⇒ node-invariant

I CB: cols. indicate membership; hB,k : common coeff. for each group

I Number of learnable parameters:
∑L
`=1 BK` ⇒ Independent of N

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 10/18



Hybrid NVGF CNN

1: procedure nvgf cnn({x}, T , S, {K1, . . . ,KL−1}, B)
2: Create set B by selecting B nodes with highest degree
3: Compute CB (see below)
4: Create the L− 1 layers:
5: for ` = 1 : L− 1 do
6: Create B filter taps {hB,0, . . . , hB,K`−1}
7: Obtain Hh

` =
∑K`−1

k=0 diag(CBhB,k )Sk

8: Apply non-linearity σ`(Hh
` ·)

9: end for
10: Create readout layer
11: Learn {hB,0, . . . , hB,K`−1

}L−1
`=1 from T

12: Estimate output ŷ for x /∈ T
13: end procedure

I B = {v1, . . . , vB}: B nodes with highest degree ⇒ [CB]vb,b = 1

⇒ i /∈ B: [CB]ij = 1 if j ∈ argmaxb:vb∈B{wi,vb}
I Other assignment schemes, other expansion models are possible

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 11/18



Numerical Experiments: Source Localization

I Consider Erdős-Rényi (ER) graph with N = 15 nodes, pER = 0.4

I Assume node c started a diffusion at time t = 0

⇒ Graph signal δc has 1 in node c and zeros elsewhere

I Consider observations x = Atδc for some unknown t > 0

I Localize the node c that originated the diffusion

I Test samples have white noise with σ2
w (training set is noiseless)

I Architectures tested are comprised of the following layers

⇒ FC[m]: fully connected layer with m hidden units

⇒ GC[K ,F ]: Chebyshev layer, K : length of filters, F : features

⇒ GL[K ,B]: H-NVGF layer, K : length of filters, B: selected nodes

I Architectures include a (fully-connected) readout layer (not shown)

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 12/18



Source Localization: Number of Selected Nodes

I Varying number of selected nodes B

I Performance of H-NVGF CNN improves when B increases

⇒ Still for B = N few parameters and best performance

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 13/18



Source Localization: Length of Filter

I Varying length of filter K

I Performance of H-NVGF CNN improves when K increases

⇒ After K ≥ 8, two layers are enough to gather all information

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 14/18



Source Localization: Noise Power

I Varying noise power σ2
w in the test samples

Test noise <2
w

10!4 10!3 10!2 10!1

A
cc

u
ra

cy

0.5

0.6

0.7

0.8

0.9

1

FC[2500]
GC[5; 32]
GC[5; 32]-FC[100]
GL[10; 15]-GL[10; 15]

I Drop of 5% across 5 orders of magnitude

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 15/18



Source Localization: Comparative Analysis

I Comparative analysis of the four architectures

I H-NVGF best performance with 10 times less parameters

Architecture Parameters Accuracy
FC[2500] 77, 515 72.6%
GC[5, 32] 7, 407 87.2%
GC[5, 32]-FC[100] 49, 807 84.3%
GL[10, 15]-GL[10, 15] 542 88.9%

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 16/18



Numerical Experiments: 20NEWS Dataset

I Consider news articles that can be classified in 20 categories

I Model articles through a bag-of-words approach

I Graph support based on word2vec embedding, N = 3, 000 nodes

I Comparable performance with almost 100 times less parameters

Architecture Parameters Accuracy
GC[5, 32] 1, 920, 212 60.75%
GL[5, 1500] 67, 521 60.34%

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 17/18



Conclusions

I Proposed CNN architecture that operates on graph signals

I Convolution stage replaced by a node-varying graph filter

⇒ No need for pooling (no need for clustering)

I Expressiveness ⇒ Nodes with independent filter coefficients

I Multi-resolution analysis is adjusted by length of graph filters

I Hybrid NVGF ⇒ Number of parameters independent of data dimension

I Tested on synthetic source localization and also 20NEWS dataset

⇒ Similar performance with 10 to almost 100 less parameters

F. Gama Convolutional Neural Networks via Node-Varying Graph Filters 18/18


