UNIVERSITE
DE GENEVE

stochastic
information
processing

Vector compression for similarity search using
Multi-layer Sparse Ternary Codes

Sohrab Ferdowsi, Slava Voloshynovskiy, Dimche Kostadinov

Department of Computer Science, University of Geneva, Switzerland
{Sohrab.Ferdowsi, svolos, Dimche.Kostadinov}@unige.ch
http://sip.unige.ch

Overview

Applications: Contributions:
o Large-scale retrieval systems
o Learned compression of feature vectors

@ Compressed representation useful for fast
similarity search

o Rate-distortion (R-D) study of ternary and
binary encoding

@ Designing R-D efficient multi-layer
Sparse Ternary Codes (STC)

Background

@ Ability to search for similarity within a database is crucial for modern retrieval systems.

@ A wide-spread solution is binary hashing.

@ We proposed ternary hashing [WIFS’16] as an alternative to binary hashing.

@ We showed that ternary encoding has higher coding gain than binary encoding [ISIT'17].

@ Here we extend ternary encoding for the task of compression, so that we can have list-refinement.
@ Our design challenge: To have good R-D performance within STC limitations.

Problem formulation: ANN search

Similarity search:
@ (Exact) Nearest Neighbor (NN) search:
L(q) = {1 <i < Nl|dg(f(i),q) < en}
o Approximate Nearest Neighbor (ANN) search:
L(q) = {1 <i< N|dp(Q[t(i)], Qlq]) < ¢}
@ Our solution: List-refinement with reconstruction

L'(q) = {i € £(q)|de(Q ' [Q[()],q) < €}

Compressiom:

@ Encoding: x = Q[f]
o Reconstruction: f = Q™ 1[x]
o Rate: R =
IE[# bits used to represent x|
o Distortion: D = E[dg(F,F)]
dg(a,b) £ 1|la—b]|3
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Single-layer Sparse Ternary Codes (STC)
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Optimizing single-layer STC

Back-projection B:
o Decompose B = (ATA)"1ATB/, optimize B':

Projection A:
@ To have un-correlated X:

1
Cr £ —E[FF!] = UpxUL
n
o Simply as in PCA: A = UL
oX £ AF ~ N(0,%F)
o With this choice of A: = B’ =1,,, B = AT

B’ = argmin ||F — (ATA)_IATB/XH%:
B/
— argmin Tr[ _2AATARXTBT & B’XXTB’TAAT} |
B/
= B’ = AFX! (xx7)~1.
@ Calculation of distortion:

D = E[dp(F.F)] = E[|[F ~ ATX|}3] = "E[||AF - X)|}3] = E[|X ~ 6,(X) © 8]}3].

o Distortion per each dimension (D = > ; D;):
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@ Optimal Re-weighting vector: ;" = argming D; = L
T vano(2)

oRate: R = 1H/(X) = + Y1 Hi(X;) = —5 Y7 (2041' logy () + (1 — 20) logy(1 — 2041'))

— n Zui=1 - n Zui=1

o Sparsity per each dimension: o; £ P[X; = +5;] = P[X; = — 3]

R-D performance of single-layer STC on AR(1) Gaussian sources
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Poor R-D performance for single-layer: rate mismatch

1073 1073 1073
optimal (7..d.) | optimal (7.i.d.) optimal (7.i.d.)
2 Single-layer (i.i.d.) | 6 Single-layer (i.i.d.) | 8 Single-layer (i.i.d.)
-«=-  optimal (mid-corr.) -#-  optimal (mid-corr.) - -#-  optimal (mid-corr.)
1.5 1 - »= Single-layer (mid-corr.) - »= Single-layer (mid-corr.) || 6l - = Single-layer (mid-corr.) ||
= — optimal (high-corr.) || & 4l — optimal (high-corr.) || & — optimal (high-corr.)
= . — Single-layer (high-corr.) = \ — Single-layer (high-corr.) = — Single-layer (high-corr.)
S < | =
B \\\ 2 B
0.5 | *% - ”‘Nﬁw
Q |
b , &“:“*“‘-&* ol
0 L—\—»—BEMM—M—M—N—M—M—M—M—N- = =S ot
| | | | | | | | | | | | | | | | | | | | | | | | | | |
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
dimension dimension dimension
(a) low-rate (b) mid-rate (c) high-rate

@ Optimal rate allocation is calculated using the “reverse water-filling” paradigm from information theory.

@ At higher rates, rate allocation deviates largely from optimal assignment.
@ Binary encoding is a special case of ternary encoding with zero sparsity and hence rate is very high.

From single-layer to multi-layer architecture
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R-D performance for multi-layer STC
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Search and R-D performance of multi-layer STC on public databases
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@ Single-layer encoding is insufficient to provide good R-D performance at high rates.
@ Residual-based multi-layer encoding can provide reasonable R-D performance.
@ Since binary-encoding has rate mismatch, it cannot benefit from multi-layer encoding.

@ Ternary encoding with high sparsity has low rate mismatch and can benefit from multi-layer encoding.

@ Future work: Joint learning of all layers.
@ Python implementation ©: https://github.com/sssohrab/DSW2018
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