Multi-scale algorithms for optimal transport

Bernhard Schmitzer

June 2018

Overview

- 1. Introduction: optimal transport
- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

Overview

1. Introduction: optimal transport

- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

Metric measure spaces for data modelling Comparing and understanding data

'Are two samples similar?'

Language: positive Radon measures $\mathcal{M}_+(X)$ on metric space (X, d)

• similarity of samples \Leftrightarrow metric on $\mathcal{M}_+(X)$

Metric measure spaces for data modelling Comparing and understanding data

'Are two samples similar?'

Language: positive Radon measures $\mathcal{M}_+(X)$ on metric space (X, d)

• similarity of samples \Leftrightarrow metric on $\mathcal{M}_+(X)$

Couplings and optimal transport

Couplings

- $\Pi(\mu,\nu) = \{\pi \in \mathcal{M}_+(X \times X) : \mathsf{P}_{1\sharp}\pi = \mu, \, \mathsf{P}_{2\sharp}\pi = \nu \}$
- marginals: $P_{1\sharp}\pi(A) = \pi(A \times X), P_{2\sharp}\pi(B) = \pi(X \times B)$
- rearrangement of mass, generalization of map

Optimal transport [Kantorovich, 1942]

$$C(\mu,\nu) = \inf \left\{ \int_{X \times X} c(x,y) \, \mathrm{d}\pi(x,y) \, \Big| \pi \in \Pi(\mu,\nu) \right\}$$

- **cost function** $c: X \times X \to \mathbb{R}$ for moving unit mass from x to y
- **convex problem**: linear program
- minimizers exist under mild assumptions

Wasserstein distance on probability measures $\mathcal{P}(X)$

$$W_p(\mu, \nu) = (C(\mu, \nu))^{1/p}$$
 for $c(x, y) = d(x, y)^p$, $p \in [1, \infty)$

Wasserstein distances: basic properties

$$W_{p}(\mu,\nu) = \inf \left\{ \int_{X\times X} d(x,y)^{p} d\pi(x,y) \middle| \pi \in \Pi(\mu,\nu) \right\}^{1/p}$$

Properties

 \checkmark intuitive: minimal $\pi \Rightarrow$ optimal assignment

✓ 'respects' (*X*, *d*), **robust** to discretization errors, positional noise ✓ **flexible:** works for (almost) any metric space

Comparison with L^p distances

Wasserstein distances: advanced properties

Displacement interpolation

• (X, d) length space $\Rightarrow (\mathcal{P}(X), W_{\rho})$ is length space

Barycenter: weighted center of mass in $(\mathcal{P}(\mathbb{R}^d), W_2)$

[Agueh and Carlier, 2011; Cuturi and Doucet, 2014; Benamou et al., 2015]

Wasserstein distances: summary

Attractive properties

- \checkmark intuitive, robust, flexible metric for probability measures
- ✓ rich geometric structure (displacement interpolation, barycenters, gradient flows)
- $\checkmark\,$ accessible by convex optimization
- \Rightarrow Increasingly successful as numerical tool in data analysis
 - [Rubner et al., 2000; Pele and Werman, 2009; Wang et al., 2012; Solomon et al., 2012; Cuturi and Avis, 2014; Peyré et al., 2016; Papadakis and Rabin, 2017; Mandad et al., 2017; Thorpe et al., 2017; Tameling et al., 2017]...

Limitations and open questions

- naive numerical computation expensive
- only for probability measures
- non-scalar data, spatial regularity, ...

Wasserstein distances: summary

Attractive properties

- \checkmark intuitive, robust, flexible metric for probability measures
- ✓ rich geometric structure (displacement interpolation, barycenters, gradient flows)
- $\checkmark\,$ accessible by convex optimization
- \Rightarrow Increasingly successful as numerical tool in data analysis
 - [Rubner et al., 2000; Pele and Werman, 2009; Wang et al., 2012; Solomon et al., 2012; Cuturi and Avis, 2014; Peyré et al., 2016; Papadakis and Rabin, 2017; Mandad et al., 2017; Thorpe et al., 2017; Tameling et al., 2017]...

Limitations and open questions

- naive numerical computation expensive
- only for probability measures
- non-scalar data, spatial regularity, ...

Overview

- 1. Introduction: optimal transport
- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

Solvers and algorithms

"Classical" methods in a nutshell

- - Hungarian method [Kuhn, 1955],
 - auction algorithm [Bertsekas, 1979],
 - network simplex [Ahuja et al., 1993]
- or √efficient but X not very flexible
 - [Aurenhammer et al., 1998; Haker et al., 2004; Benamou et al., 2014]

Entropy regularization and Sinkhorn algorithm

[Wilson, 1969; Kosowsky and Yuille, 1994; Cuturi, 2013]

- approximate method: introduces some blur (√/ X)
- \checkmark simple algorithm, easy to parallelize
- \checkmark versatile: generalizes to
 - **barycenters** [Benamou et al., 2015]
 - gradient flows [Peyré, 2015]
 - unbalanced transport [Chizat, Peyré, Schmitzer, and Vialard, 2016]

X no free lunch: slow for small regularization, memory intensive Overview: G. Peyré and M. Cuturi. Computational Optimal Transport. arXiv:1803.00567, 2018.

Kantorovich formulation in a nutshell

■ marginals $\mu, \nu \in \mathcal{P}(X)$, ground cost $c : X \times X \to \mathbb{R}$, couplings $\Pi(\mu, \nu)$ $C(\mu, \nu) = \inf_{x \to \infty} \sum_{x \to \infty} C(x, x) \pi(x, \nu)$

$$C(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sum_{(x,y) \in X \times X} c(x,y) \pi(x,y)$$

Kantorovich formulation in a nutshell

■ marginals μ , $\nu \in \mathcal{P}(X)$, ground cost $c : X \times X \to \mathbb{R}$, couplings $\Pi(\mu, \nu)$

$$C(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sum_{(x,y) \in X \times X} c(x,y) \pi(x,y)$$

dual problem: prices $(\alpha, \beta) \in (\mathbb{R}^{\times}, \mathbb{R}^{\times})$

$$C(\mu,\nu) = \sup_{(\alpha,\beta)} \sum_{x \in X} \alpha(x) \mu(x) + \sum_{y \in X} \beta(y) \nu(y) \quad \text{s.t. } \alpha(x) + \beta(y) \le c(x,y)$$

PD optimality condition: $[\pi(x, y) > 0] \Rightarrow [\alpha(x) + \beta(y) = c(x, y)]$

Kantorovich formulation in a nutshell

■ marginals μ , $\nu \in \mathcal{P}(X)$, ground cost $c : X \times X \to \mathbb{R}$, couplings $\Pi(\mu, \nu)$

$$C(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sum_{(x,y) \in X \times X} c(x,y) \pi(x,y)$$

dual problem: prices $(\alpha, \beta) \in (\mathbb{R}^{\times}, \mathbb{R}^{\times})$

$$C(\mu,\nu) = \sup_{(\alpha,\beta)} \sum_{x \in X} \alpha(x) \mu(x) + \sum_{y \in X} \beta(y) \nu(y) \quad \text{s.t. } \alpha(x) + \beta(y) \le c(x,y)$$

PD optimality condition: [π(x, y) > 0] ⇒ [α(x) + β(y) = c(x, y)]
 sparse sub-problem: N ⊂ X × X

- \checkmark Kantorovich: flexibility, simple discretization
- **X** high dimensionality $(|X|^2 \text{ variables})$
 - often: optimal π has sparse support
 ⇒ only sparse subset N ⊂ X × X relevant (|N| variables)
 - (related to polar factorization in continuum [Brenier, 1991])

- \checkmark Kantorovich: flexibility, simple discretization
- **X** high dimensionality $(|X|^2 \text{ variables})$
 - often: optimal π has **sparse support** \Rightarrow only sparse subset $\mathcal{N} \subset X \times X$ relevant ($|\mathcal{N}|$ variables)
 - (related to polar factorization in continuum [Brenier, 1991])

- \checkmark Kantorovich: flexibility, simple discretization
- **X** high dimensionality $(|X|^2 \text{ variables})$
- often: optimal π has **sparse support** \Rightarrow only sparse subset $\mathcal{N} \subset X \times X$ relevant ($|\mathcal{N}|$ variables)
- (related to polar factorization in continuum [Brenier, 1991])

- [Mérigot, 2011; Schmitzer and Schnörr, 2013; Glimm and Henscheid, 2013; Oberman and Ruan, 2015; Bartels and Schön, 2017; Bartels and Hertzog, 2017]
- estimate *N* on coarser scale

- \checkmark Kantorovich: flexibility, simple discretization
- **X** high dimensionality $(|X|^2 \text{ variables})$
- often: optimal π has **sparse support** \Rightarrow only sparse subset $\mathcal{N} \subset X \times X$ relevant ($|\mathcal{N}|$ variables)
- (related to polar factorization in continuum [Brenier, 1991])

- [Mérigot, 2011; Schmitzer and Schnörr, 2013; Glimm and Henscheid, 2013; Oberman and Ruan, 2015; Bartels and Schön, 2017; Bartels and Hertzog, 2017]
- estimate *N* on coarser scale

- \checkmark Kantorovich: flexibility, simple discretization
- **X** high dimensionality $(|X|^2 \text{ variables})$
- often: optimal π has **sparse support** \Rightarrow only sparse subset $\mathcal{N} \subset X \times X$ relevant ($|\mathcal{N}|$ variables)
- (related to polar factorization in continuum [Brenier, 1991])

Multi-scale scheme

- [Mérigot, 2011; Schmitzer and Schnörr, 2013; Glimm and Henscheid, 2013; Oberman and Ruan, 2015; Bartels and Schön, 2017; Bartels and Hertzog, 2017]
- estimate *N* on coarser scale

Challenge: rigorous guarantee of (near) global optimality

- [Schmitzer and Schnörr, 2013; Schmitzer, 2016b]
- entropy regularization: [Schmitzer, 2016a]

Overview

- 1. Introduction: optimal transport
- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

- **given problem**: μ , ν , cost c, neighbourhood \mathcal{N}
- **Ically optimal primal & dual solution** on \mathcal{N} : (π, α, β)

$$\operatorname{spt} \pi \subset \mathcal{N}, \quad \alpha(x) + \beta(y) \begin{cases} \leq c(x, y) & \text{for } (x, y) \in \mathcal{N} \\ = c(x, y) & \text{for } (x, y) \in \operatorname{spt} \pi \end{cases}$$
(*)

- **given problem:** μ , ν , cost *c*, neighbourhood \mathcal{N}
- **Iocally optimal primal & dual solution** on \mathcal{N} : (π, α, β)

$$\operatorname{spt} \pi \subset \mathcal{N}, \quad lpha(x) + eta(y) egin{cases} \leq c(x,y) & ext{for } (x,y) \in \mathcal{N} \ = c(x,y) & ext{for } (x,y) \in \operatorname{spt} \pi \end{cases}$$

global optimality if all dual constraints satisfied

- **given problem:** μ , ν , cost c, neighbourhood \mathcal{N}
- **locally optimal primal & dual solution** on \mathcal{N} : (π, α, β)

$$\operatorname{spt} \pi \subset \mathcal{N}, \quad lpha(x) + eta(y) egin{cases} \leq c(x,y) & ext{for } (x,y) \in \mathcal{N} \ = c(x,y) & ext{for } (x,y) \in \operatorname{spt} \pi \end{cases}$$

global optimality if all dual constraints satisfied Def: shortcut for (x₁, y_n): tuple ((x₂, y₂),..., (x_{n-1}, y_{n-1})) with (x_i, y_i) ∈ spt π, (x_i, y_{i+1}) ∈ N and

$$c(x_1, y_2) + \sum_{i=2}^{n-1} [c(x_i, y_{i+1}) - c(x_i, y_i)] \le c(x_1, y_n)$$

- **given problem:** μ , ν , cost c, neighbourhood \mathcal{N}
- **locally optimal primal & dual solution** on \mathcal{N} : (π, α, β)

$$\operatorname{spt} \pi \subset \mathcal{N}, \quad lpha(x) + eta(y) egin{cases} \leq c(x,y) & ext{for } (x,y) \in \mathcal{N} \ = c(x,y) & ext{for } (x,y) \in \operatorname{spt} \pi \end{cases}$$

global optimality if all dual constraints satisfied
 Def: shortcut for (x₁, y_n): tuple ((x₂, y₂),..., (x_{n-1}, y_{n-1})) with (x_i, y_i) ∈ spt π, (x_i, y_{i+1}) ∈ N and

$$\alpha(x_1) + \beta(y_n) \stackrel{(*)}{\leq} c(x_1, y_2) + \sum_{i=2}^{n-1} [c(x_i, y_{i+1}) - c(x_i, y_i)] \leq c(x_1, y_n)$$

■ Lemma: local optimality + shortcuts ⇒ global optimality

Shortcut algorithm

- search for shortcuts infeasible
- shielding condition for (*N*, π): local way to ensure existence of all shortcuts
- algorithm:

until convergence:

- $\pi \leftarrow$ solve local problem on $\mathcal N$
- $\mathcal{N} \leftarrow$ generate shielding neighbourhood for π
- Thm: returns globally optimal solution
- how to implement shield?
 - solved for "standard cases"
 - ongoing research

Numerical results

- \checkmark significant speed-up
- X run-time scaling approx. quadratic
- ✓ memory demand **linear** in marginal size

Overview

- 1. Introduction: optimal transport
- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

Sparse Sinkhorn algorithm

• regularized problem: $\pi_{\varepsilon} := \operatorname{argmin}_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} c \, \mathrm{d}\pi + \varepsilon \, \mathrm{KL}(\pi|\rho)$ X π_{ε} is dense

✓ [Cominetti and San Martin, 1992]: $\pi_{\varepsilon} \rightarrow \pi_0$ exponentially for $\varepsilon \rightarrow 0$, π_0 : sparse unregularized solution

Sparse Sinkhorn algorithm

• regularized problem: $\pi_{\varepsilon} := \operatorname{argmin}_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} c \, \mathrm{d}\pi + \varepsilon \, \mathrm{KL}(\pi|\rho)$ X π_{ε} is dense

✓ [Cominetti and San Martin, 1992]: $\pi_{\varepsilon} \rightarrow \pi_0$ exponentially for $\varepsilon \rightarrow 0$, π_0 : sparse unregularized solution

Sparse approximation [Schmitzer, 2016a]

- for sparse subset $\mathcal{N} \subset X \times X$: truncated coupling $\pi_{\perp \mathcal{N}}$
- Lemma: bound for truncation error Δ(π_L, α, β): small when little mass is truncated
- sparse approximate algorithm:
 - sparse Sinkhorn iterations on ${\cal N}$
 - update \mathcal{N} when $\Delta(\pi \llcorner_{\mathcal{N}}, \alpha, \beta)$ too large
- more numerical tricks (e.g. ε-scaling,...)

_								
-	⊢							_
	⊢							
	_	_	_	_	_	_	_	_

Sparse Sinkhorn algorithm

• regularized problem: $\pi_{\varepsilon} := \operatorname{argmin}_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} c \, \mathrm{d}\pi + \varepsilon \, \mathrm{KL}(\pi|\rho)$ X π_{ε} is dense

✓ [Cominetti and San Martin, 1992]: $\pi_{\varepsilon} \rightarrow \pi_0$ exponentially for $\varepsilon \rightarrow 0$, π_0 : sparse unregularized solution

Sparse approximation [Schmitzer, 2016a]

- for sparse subset $\mathcal{N} \subset X \times X$: truncated coupling $\pi_{\perp \mathcal{N}}$
- Lemma: bound for truncation error Δ(π_L, α, β): small when little mass is truncated
- sparse approximate algorithm:
 - sparse Sinkhorn iterations on ${\cal N}$
 - update \mathcal{N} when $\Delta(\pi \llcorner_{\mathcal{N}}, \alpha, \beta)$ too large
- more numerical tricks (e.g. ε-scaling,...)

_								
_	⊢							
-								_
-	-						-	_
	_							
	_	_	_	_	_	_	_	_

Numerical results: effect of computational adaptations

- \blacksquare standard Sinkhorn: number of iterations $\propto 1/\varepsilon$
- $\checkmark~\varepsilon\text{-scaling:}$ reduces iterations
- \checkmark acceleration with truncation (and multi-scale)

Numerical results: W_2 barycenter

 \checkmark adapted algorithm allows smaller $\varepsilon \Rightarrow$ sharper results

✓ convergence of entropic regularization for $\varepsilon \rightarrow 0$ [Carlier, Duval, Peyré, and Schmitzer, 2017]

Numerical results: W_2 barycenter

 \checkmark adapted algorithm allows smaller $\varepsilon \Rightarrow$ sharper results

✓ convergence of entropic regularization for $\varepsilon \rightarrow 0$ [Carlier, Duval, Peyré, and Schmitzer, 2017]

Overview

- 1. Introduction: optimal transport
- 2. Multi-scale methods
- 3. Shortcut algorithm
- 4. Sparse Sinkhorn algorithm

Conclusion

Optimal Transport

- $\checkmark\,$ flexible and robust tool for data analysis
- \mathbf{X} high naive computational complexity
 - $\checkmark\,$ steady development of more efficient methods
 - best algorithm depends on problem

Multi-scale methods

- Shortcut solver
- Sparse Sinkhorn algorithm
 - ✓ versatile: barycenters, gradient flows, unbalanced...

Further Reading

- B. Schmitzer. A sparse multi-scale algorithm for dense optimal transport. J. Math. Imaging Vis., 56(2):238–259, 2016
- B. Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems. arXiv:1610.06519, 2016.
- G. Peyré and M. Cuturi. Computational Optimal Transport. arXiv:1803.00567, 2018.

Code online: https://github.com/bernhard-schmitzer

References I

- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2):904–924, 2011.
- R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. *Network Flows: Theory, Algorithms, and Applications.* Prentice-Hall, Inc., 1993.
- F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-type theorems and least-squares clustering. *Algorithmica*, 20(1):61–76, 1998. doi: 10.1007/PL00009187.
- S. Bartels and S. Hertzog. Error bounds for discretized optimal transport and its reliable efficient numerical solution. arXiv:1710.04888, 2017.
- S. Bartels and P. Schön. Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM: Mathematical Modelling and Numerical Analysis, 51(6):2237–2261, 2017.
- J.-D. Benamou, B. D. Froese, and A. M. Oberman. Numerical solution of the optimal transportation problem using the Monge–Ampère equation. *Journal of Computational Physics*, 260(1):107–126, 2014.
- J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections for regularized transportation problems. *SIAM J. Sci. Comput.*, 37(2): A1111–A1138, 2015. URL https://hal.archives-ouvertes.fr/hal-01096124.
- D. P. Bertsekas. A distributed algorithm for the assignment problem. Technical report, Lab. for Information and Decision Systems Report, MIT, May 1979.

References II

- Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Comm. Pure Appl. Math.*, 44(4):375–417, 1991.
- G. Carlier, V. Duval, G. Peyré, and B. Schmitzer. Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.
- L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Scaling algorithms for unbalanced transport problems. to appear in Mathematics of Computation, arXiv:1607.05816, 2016.
- R. Cominetti and J. San Martin. Asymptotic analysis of the exponential penalty trajectory in linear programming. *Mathematical Programming*, 67:169–187, 1992.
- M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances. In Advances in Neural Information Processing Systems 26 (NIPS 2013), pages 2292–2300, 2013.
- M. Cuturi and D. Avis. Ground metric learning. Journal of Machine Learning Research, 15:533–564, 2014.
- M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In *International Conference on Machine Learning*, 2014.
- T. Glimm and N. Henscheid. Iterative scheme for solving optimal transportation problems arising in reflector design. *ISRN Applied Mathematics*, 2013.
- S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent. Optimal mass transport for registration and warping. *Int. J. Comp. Vision*, 60(3):225–240, December 2004.

References III

- L. V. Kantorovich. O peremeshchenii mass. *Doklady Akademii Nauk SSSR*, 37(7–8): 227–230, 1942.
- J. Kosowsky and A. Yuille. The invisible hand algorithm: Solving the assignment problem with statistical physics. *Neural Networks*, 7(3):477–490, 1994.
- H. W. Kuhn. The Hungarian method for the assignment problem. *Naval Research Logistics*, 2:83–97, 1955.
- M. Mandad, D. Cohen-Steiner, L. Kobbelt, P. Alliez, and M. Desbrun. Variance-minimizing transport plans for inter-surface mapping. https://hal.inria.fr/hal-01519006/, 2017.
- Q. Mérigot. A multiscale approach to optimal transport. *Computer Graphics Forum*, 30(5):1583–1592, 2011.
- A. M. Oberman and Y. Ruan. An efficient linear programming method for optimal transportation. arxiv:1509.03668, 2015.
- N. Papadakis and J. Rabin. Convex histogram-based joint image segmentation with regularized optimal transport cost. *J. Math. Imaging Vis.*, 2017.
- O. Pele and W. Werman. Fast and robust earth mover's distances. In International Conference on Computer Vision (ICCV 2009), 2009.

References IV

- G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein averaging of kernel and distance matrices. In *International Conference on Machine Learning (ICML 2016)*, pages 2664–2672, 2016. URL https://hal.archives-ouvertes.fr/hal-01322992.
- G. Peyré. Entropic approximation of Wasserstein gradient flows. SIAM J. Imaging Sci., 8(4):2323–2351, 2015.
- Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. Int. J. Comp. Vision, 40(2):99–121, 2000.
- B. Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems. arXiv:1610.06519, 2016a.
- B. Schmitzer. A sparse multi-scale algorithm for dense optimal transport. J. Math. Imaging Vis., 56(2):238–259, 2016b.
- B. Schmitzer and C. Schnörr. A hierarchical approach to optimal transport. In *Scale Space and Variational Methods (SSVM 2013)*, pages 452–464, 2013.
- J. Solomon, A. Nguyen, A. Butscher, M. Ben-Chen, and L. Guibas. Soft maps between surfaces. *Computer Graphics Forum*, 31(5), 2012. ISSN 1467-8659. doi: 10.1111/j.1467-8659.2012.03167.x.
- C. Tameling, M. Sommerfeld, and A. Munk. Empirical optimal transport on countable metric spaces: Distributional limits and statistical applications. arXiv:1707.00973, 2017.

References V

- M. Thorpe, S. Park, S. Kolouri, G. K. Rohde, and D. Slepčev. A transportation Lp distance for signal analysis. J. Math. Imaging Vis., 2017. doi: 10.1007/s10851-017-0726-4.
- W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. *Int. J. Comp. Vision*, 101:254–269, 2012.
- A. G. Wilson. The use of entropy maximizing models, in the theory of trip distribution, mode split and route split. *Journal of Transport Economics and Policy*, pages 108–126, 1969.