Context-Aware Energy Saving with Proactive Power Allocation

Yuzhou Hu, Shengqian Han, Chenyang Yang Beihang University, Beijing,China sqhan@buaa.edu.cn http://welcom.buaa.edu.cn

- Background
- System Model
- Context-Aware Proactive Power Allocation
- Simulation Results
- Conclusions

Passive Resource Allocation Policy:

Based on up-to-date information of users and the network, awaiting users' initiatives. Popular in existing cellular networks

For Energy-Saving or Other Green Communication Goals, Proactive Resource Allocation Policy:

Strategically pre-buffers based on ignored yet predictable context information such as:

- User Service Requests
- User Future Data Rate(Channel Quality)
- Network Resources Availability

• ...

Background

Existing Work on Proactive Resource Allocation:

Assumption: perfect prediction of future data rate Reduced Spectral Utilization Energy-Saving

BUT small scale channel fading future resource availability } Hard to Accurately Predict!!

 Existing Work on the Impact of Rate Prediction Uncertainty: Assumption: triangular membership function modelling rate uncertainty robust BS airtime allocation method

System Model

$$R_n = \sum_{k=1}^{K} \Delta_f \cdot \xi_{nk} \log \left(1 + p_n \lambda_n \Box \mathbf{h}_{nk} \Box^2 \right)$$

Accumulative data within $N\Delta_t$

$$\sum_{n=1}^{N}\sum_{k=1}^{K}\Delta_{f}\cdot\xi_{nk}\log\left(1+\lambda_{n}p_{n}\left\|\boldsymbol{h}_{nk}\right\|^{2}\right)\cdot\Delta_{t}$$

Minimize the average total transmit energy consumed for conveying the B bits in N time slots, under the transmission outage constraint as well as maximal transmit power constraint

$$\min_{\mathbf{p}} \mathbf{E} \left\{ \Delta_{t} \sum_{n=1}^{N} \sum_{k=1}^{K} \xi_{nk} p_{n} \right\} = \sum_{n=1}^{N} \Delta_{t} K \rho_{n} p_{n}$$
s.t. $P_{out}(\mathbf{p}) = \Pr \left(\sum_{n=1}^{N} \sum_{k=1}^{K} \xi_{nk} \log \left(1 + \lambda_{n} p_{n} \| \boldsymbol{h}_{nk} \|^{2} \right) < S \right) \leq (\varepsilon)$ maximum acceptable outage probability
$$0 \leq p_{n} \leq \frac{P_{\max}}{K}, n = 1, ..., N$$

$$S \triangleq \underbrace{\left(\begin{array}{c} B \\ \Delta \end{array} \right)}_{\text{file size}}$$
First Step: Transform the outage probability constraint into a convex constraint with explicit expression
subcarrier spacing $\left(\begin{array}{c} \Delta \end{array} \right) \Delta_{t}$, time slot length

Outage Probability Constraint

Decouple \boldsymbol{p}_n and $\|\boldsymbol{h}_{nk}\|^2$ to obtain a convex constraint with explicit expression

Step 1: Power Allocation for Given A

$$\min_{\mathbf{p}} \mathbf{E} \left\{ \Delta_{t} \sum_{n=1}^{N} \sum_{k=1}^{K} \xi_{nk} p_{n} \right\} = \sum_{n=1}^{N} \Delta_{t} K \rho_{n} p_{n}$$

s.t.
$$\Pr \left(\sum_{n=1}^{N} \sum_{k=1}^{K} \xi_{nk} \left[\log \left(\left\| \boldsymbol{h}_{nk} \right\|^{2} \right) + \log \left(A + \lambda_{n} p_{n} \right) \right] < S \right)$$
$$0 \le p_{n} \le \frac{P_{\max}}{K}, n = 1, \dots, N$$

As each term is i.i.d, based on C.L.T,

$$R_n(A) = \sum_{k=1}^{K} \xi_{nk} \left(\log \left(\left\| \boldsymbol{h}_{nk} \right\|^2 \right) + \log \left(A + \lambda_n p_n \right) \right) \sim N(E_n, D_n)$$

Considering for $n = 1, ..., N, R_n(A)$ are independent from each other

$$\sum_{n=1}^{N}\sum_{k=1}^{K}\xi_{nk}\left[\log\left(\left\|\boldsymbol{h}_{nk}\right\|^{2}\right) + \log\left(A + \lambda_{n}p_{n}\right)\right] \sim N\left(\sum_{n=1}^{N}E_{n}, \sum_{n=1}^{N}D_{n}\right)$$

Outage probability constraint converted into a **explicit** expression with respect to \boldsymbol{p} , $\sqrt{\sum_{n=1}^{N} \boldsymbol{D}_{n}(p_{n})} \leq -\frac{\sum_{n=1}^{N} \boldsymbol{E}_{n}(p_{n})}{\boldsymbol{\phi}^{-1}(\boldsymbol{\varepsilon})} + \frac{\boldsymbol{S}}{\boldsymbol{\phi}^{-1}(\boldsymbol{\varepsilon})}$

Step 1: Power Allocation for Given A $E_{n} = K \rho_{n} \Big[\log (A + \lambda_{n} p_{n}) + \log (e) \psi (N_{t}) \Big]$ $D_{n} = K \log^{2} (e) \psi (N_{t}) \rho_{n} + K \rho_{n} (1 - \rho_{n}) \cdot \Big[\log (A + \lambda_{n} p_{n}) + \log (e) \psi (N_{t}) \Big]^{2}$ Denote

$$c_n = \rho_n (1 - \rho_n)$$

$$z_n = \log(A + \lambda_n p_n) + \log(e) \psi(N_t)$$

此京航空航天大学 BEIHANG UNIVERSITY Outage probability constraint converted into a convex constraint with explicit expression:

Step 2: Optimization of A The largest A whose corresponding power allocation $p^*(A)$ ensures the original outage probability.

Largest: Average Energy Consumption is monotonically decreasing with respect to A

Method: Bisection method, extra constraint $P_{out}(\hat{\mathbf{p}}^{*}(A_{U})) \leq P_{out}(\hat{\mathbf{p}}^{*}(A)) \leq P_{out}(\hat{\mathbf{p}}^{*}(A_{L}))$ Ensuring the convergence as the corresponding outage probability is monotonically increasing with A

Step 2: Optimization of A Numerical Expression of Outage Probability for given $p^*(A)$:

Simulations

Antennas	4	User mobility	Random Direction
$P_{\rm max}$ of the BS	46dBm	User speed v	3 km / h
The cell radius	250m	File size <i>B</i>	0.5 Gbs
The path loss model	$30.6+37.6\log_{10}(d/m)$	No. of time slots N	360
SNR	10dB	Time slot duration Δ_t	10s
Subcarriers K	1200	Availability P_n	U[0 1]
Subcarrier spacing Δ_f	15kHz	Outage <i>E</i>	0.05

Performance Benchmarks:

- 1.Power-Minimizing: minimize power per time slot;
- 2.Capacity-Maximizing: maximize capacity per time slot;
- 3.Upper-Bound:perfect rate prediction based proactive power allocation.

Simulations

Average total transmit energy consumption of the proposed method and three relevant policies

1. The proposed policy \approx upper bound especially for small to medium B

statistical information provide most gain
of proactive resource allocation!!!

2.The proposed policy exhibits evident performance gain to the benchmarks.

Power-Minimizing policy supports small size file under the outage constraint

Simulations

Comparison of the optimal values of A and $\frac{1}{N_{t}}$ for different number of antennas

北京航空航天大

UNIVERSITY

BEIHANG

1. For large
$$N_t$$
, $A = \frac{1}{N_t}$

$$\left\|\boldsymbol{h}_{nk}\right\|^{2} \rightarrow N_{t}, N_{t} \rightarrow \infty$$

2. For small
$$N_t$$
,
Energy gain $A \gg$ energy gain $\frac{1}{N_t}$

- Context-aware proactive power allocation policy with average channel gains and statistical information of available frequency resources of the network
- A new approximation for the outage-based QoS constraint
- A hierarchical algorithm to solve the average total transmit energy minimization problem

Thank you for your attention!

