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We address the problem of statistical inference and

decision making 1n a network ot independent, low-

bandwidth sensors

* JoT, Sensor Networks, radar, radio spectrum

sensing, environmental surveillance, cyber-
physical systems

It 1s not teasible to specity accurate probability

models for each sensor in large scale applications

Data driven approach: empirical models and a tully

nonparametric inference

Distributions are learned from data: each sensor

can adjust to its operational environment

Reporting Channels
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Fusion Rule
Distribution of p-values
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Processed Data
XN Pn

p, = local p-value

A parallel topology, where the observers only have a one-way
communication channel with a global Fusion Center is assumed

Contributions

Fully nonparametric distributed detection approach
Underlying probability models approximated by
empirical distributions

Distributions ot the test statistics are learned from
the data by bootstrapping at each sensor

The local test compares the observed data to the
learned distribution under null hypothesis using the
one sample Anderson-Darling (AD) test

Fach sensor sends its p-value trom a local AD test
to the FC that that makes final decision

FC performs a test on the distribution ot p-values
Concentration towards small p-values: the evidence

for rejecting the null hypothesis is strong
Fisher’s Chi-square, Stouffer’s Z-score and Tippett’s
minimum value tests considered at FC

Strict control of the error levels in decision making

System Model

* Hypothesis testing problem where a training data
set X from unspecified distribution F is collected in
each sensor under H, conditions
* Fand test statistics distributions are learned from
data
* Distribution Fis compared to observation data Y
generated from distribution G, and a local test 1s
performed with following hypotheses:

* H,: Both X and Y obey the same distribution F

=G
* H;: X and Y obey different distributions F # G

One-Sample Anderson-Darling Test

* In most applications, one atfords to collect lot of

training data, and empirical approximation F for F
using bootstrapping is thus accurate

* One-Sample version of AD test comparing ¥ with
F is more accurate than two-sample approach of
contrasting X and Y

* Tradeoft is higher computational demand, mainly
in local oftline computation in training phase

* 'The one-sample test consistently outperforms the
two-sample test independent of the underlying

distributions
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AD test statistic 7 is the weighted area between distributions

Learning the Test Statistic Distribution

* When working only with empirical distributions,
the distribution of T under null cannot be derived
analytically

* Bootstrapping provides an accurate approximation
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* A local p-value 1s conveniently obtained as the
proportion of bootstrapped samples more

extreme than obtained T
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Fusion of Local Tests

* Ina continuous sample space, the p-value is
uniformly distributed between 0 and 1 if the
null hypothesis is true

* Comparison of p-value fusion methods shows

that for our purposes methods evaluating the

distribution ot local p-values are most etticient
* Fisher’s Chi-square, Stoutter’s Z-score and

Tippett’s minimum value tests employed at FC
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* Fisher’s and Stoutfer’s methods exploit this

property to construct transformations that
follow a well known distribution under H,,
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* The methods have near linear relationship, but

performance differences still exist, with Fishet’s
method being more accurate in our simulations

* Both methods outperform most optimal binary

fusion rules (Chair-Varshney)

* The methods look at the distribution of p-values,

for large scale sensor networks: a few outliers will
not determine the outcome. Robustness to
malfunctioning sensors.

* Reliability of local sensor test is still important
* Secure communication of p-values to FC 1s

under development

ROC graph of row 2 in Table 3:
normal distributions with differing means
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Testing the distribution of p-values is more efficient than
making decision based on binary inputs. Information loss is
experienced in comparison to a theoretical centralized
scheme where sensors send all their data to FC, but the
difference is not very significant.
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