

IEEE Data Science

Workshop

Alternating Autoencoders for Matrix Completion

Kiwon Lee, Yong H. Lee, and Changho Suh Korea Advanced Institute of Science and Technology (KAIST)

Overview

Autoencoders (AEs)

- Autoencoders (AEs) for matrix completion (MC) and collaborative filtering (CF)
- Item-based autoencoder (I-AE) _

Alternating autoencoders

Algorithm 1 Alternating autoencoders.

- 1: Input: Incomplete matrix M, error tolerance δ and maximum training epoch k_{max} .
- 2: Initialize \overline{H}_0 and all weighting matrices of AEs, k = 0, $\tau_0 = \infty$ and $k_{al} = 0$.
- 3: repeat
- k = k + 1
- Update \boldsymbol{H}_k of I-AE, while fixing $\boldsymbol{W}_k = \overline{\boldsymbol{H}}_{k_{al}}^T$, via back-propagation.
- Evaluate e_k .
- 7: **until** $e_k < \tau_{k-1}$
- 8: Set $\tau_k = e_k \delta$ and $k_{al} = k$.

User-based autoencoder (U-AE) _

Sequential estimation property of AEs

For I-AE, the encoder first estimates the item feature matrix $V^{T}(=H)$ and then the decoder estimates user feature matrix U(=W) as a function of $V^T(=H)$.

9: repeat k = k + 110: Update \overline{H}_k of U-AE, while fixing $\overline{W}_k = H_{k_{al}}^T$, via 11: back-propagation. Evaluate e_k . 12:13: **until** $e_k < \tau_k$ 14: Set $\tau_k = e_k - \delta$ and $k_{al} = k$ 15: Go to step 3 and repeat the process until $k = k_{\text{max}}$. 16: **Output**: Estimated low-rank matrix $\widehat{M} = \overline{H}_{k_{\text{max}}}^T H_{k_{\text{max}}}$

Confirming sequential estimation property

Observation 1

- After convergence, the matrices Y, W and H for I-AE satisfy rank(H) = rank(W) = rank(Y)
- This observation is confirmed by showing that $col(\mathbf{Y}) = col(\mathbf{W})$, and $col(\mathbf{Y}^T) = col(\mathbf{H}^T)$ via computer simulation.

Observation 2 (Matrix factorization) $Y = \widehat{M}$, W = U, and $H = V^T$

- Similarly, for U-AE, $U^T (= \overline{H})$ is estimated first and then $V(=\overline{W})$ is obtained.
- This *sequential* estimation of feature matrices can cause some performance degradation, because one of the estimated feature matrices always depends on the other.

Alternating autoencoders

-

This is a consequence of Observation 1. It is also shown via simulation that each row of W(=U) can be represented in terms of the pseudo-inverse of a submatrix of $H(=V^T)$

U-AE can be confirmed in a similar manner.

Experiments

Simulations with synthetic data

- Generate 500×500 matrices of rank 10, denoted as M_0 -
- Obtain incomplete matrices M by choosing |M| entries of - M_{o}
- **Reconstruction rate:** $Pr(reconstruction error \le 10^{-4})$

Simulations with practical data

- MovieLens-100k (943 users & 1,682 movies) MovieLens-1 _ M (6,040 users & 3,952 movies)
- Train : Test = 9 : 1

Fig. 3. Alternating autoencoder for matrix completion

After each training epoch, AAE evaluates the RMSE of the current AE, and *alternates* with the other AE if the RMSE becomes less than the RMSE of the previous AE.

Fig. 4 Reconstruction rate

Table 1. RMSE comparison

Contact

Kiwon Lee Department of EE, at KAIST; Email: <u>kaiser5072@kaist.ac.kr</u>; Phone: 82-010-2000-2954

