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Part I: General Introduction

Generative Adversarial Network 
and its Applications to Signal Processing 

and Natural Language Processing



Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, “Variational Approaches for Auto-Encoding 
Generative Adversarial Networks”, arXiv, 2017

All Kinds of GAN … https://github.com/hindupuravinash/the-gan-zoo

GAN

ACGAN

BGAN

DCGAN

EBGAN

fGAN

GoGAN

CGAN

…
…



ICASSP Keyword search on session index page, 
so session name is included.
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Outline of Part 1

Generation by GAN

• Image Generation as Example

• Theory behind GAN

• Issues and Possible Solutions

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning



Anime Face Generation

Draw

Generator

Examples



Basic Idea of GAN

Generator

It is a neural network 
(NN), or a function.

Generator
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Powered by: http://mattya.github.io/chainer-DCGAN/

Each dimension of input vector 
represents some characteristics.

Longer hair

blue hair Open mouth



Discri-
minator

scalar
image

Basic Idea of GAN It is a neural network 
(NN), or a function.

Larger value means real, 
smaller value means fake.

Discri-
minator

Discri-
minator

Discri-
minator1.0 1.0

0.1 Discri-
minator

0.1



• Initialize generator and discriminator

• In each training iteration:

DG

sample

generated 
objects

G

Algorithm

D

Update

vecto
r

vecto
r

vecto
r

vecto
r

0000

1111

randomly 
sampled

Database

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects 
and low scores to generated objects.

Fix



• Initialize generator and discriminator

• In each training iteration:

DG

Algorithm

Step 2: Fix discriminator D, and update generator G

Discri-
minator

NN
Generator

vector

0.13

hidden layer

update fix

Gradient Ascent

large network

Generator learns to “fool” the discriminator



• Initialize generator and discriminator

• In each training iteration:

DG

Learning 
D

Sample some 
real objects:

Generate some 
fake objects:

G

Algorithm

D

Update

Learning 
G

G D
image
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image
image

image
1

update fix
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Anime Face Generation

100 updates

Source of training data: https://zhuanlan.zhihu.com/p/24767059



Anime Face Generation

1000 updates



Anime Face Generation

2000 updates



Anime Face Generation

5000 updates



Anime Face Generation

10,000 updates



Anime Face Generation

20,000 updates



Anime Face Generation

50,000 updates



The faces 
generated by 
machine.

The images are generated by 
Yen-Hao Chen, Po-Chun Chien, 
Jun-Chen Xie, Tsung-Han Wu.
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(Variational) Auto-encoder

As close as possible

NN
Encoder

NN
Decoder

co
d

e

NN
Decoder

co
d

e

Randomly generate 
a vector as code Image ?

= Generator

= Generator



Auto-encoder v.s. GAN

As close as possibleNN
Decoder

co
d

e

Genera-
tor

co
d

e

= Generator

Discri-
minator

If discriminator does not simply memorize the images,

Generator learns the patterns of faces.

Just copy an image

1

Auto-encoder 

GAN

Fuzzy …



FID[Martin Heusel, et al., NIPS, 2017]: Smaller is better

[Mario Lucic, et al. arXiv, 2017]
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• Theory behind GAN
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Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning



Generator 

• A generator G is a network. The network defines a 
probability distribution 𝑃𝐺

generator 
G𝑧 𝑥 = 𝐺 𝑧

Normal 
Distribution

𝑃𝐺(𝑥) 𝑃𝑑𝑎𝑡𝑎 𝑥

as close as possible

How to compute the divergence?

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎
Divergence between distributions 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎

𝑥: an image (a high-
dimensional vector)



Discriminator
𝐺∗ = 𝑎𝑟𝑔min

𝐺
𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Although we do not know the distributions of 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎, 
we can sample from them.

sample

G

vecto
r

vecto
r

vecto
r

vecto
r

sample from 
normal

Database

Sampling from 𝑷𝑮

Sampling from 𝑷𝒅𝒂𝒕𝒂



Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

𝑉 𝐺,𝐷 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

Example Objective Function for D

(G is fixed)

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺Training:

Using the example objective 
function is exactly the same as 
training a binary classifier. 

[Goodfellow, et al., NIPS, 2014]

The maximum objective value 
is related to JS divergence.



Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

hard to discriminatesmall divergence

Discriminator
train

easy to discriminatelarge divergence

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

Training:

(cannot make objective large)



𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎max
𝐷

𝑉 𝐺,𝐷

The maximum objective value 
is related to the divergence.

• Initialize generator and discriminator

• In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

[Goodfellow, et al., NIPS, 2014]



Using the divergence 
you like ☺
[Sebastian Nowozin, et al., NIPS, 2016]

Can we use other divergence?
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• Image Generation as Example

• Theory behind GAN

• Issues and Possible Solutions

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning

https://github.com/soumith/ganhacks



JS divergence is not suitable

• In most cases, 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎 are not overlapped.

• 1. The nature of data

• 2. Sampling

Both 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 are low-dim 
manifold in high-dim space.  

𝑃𝑑𝑎𝑡𝑎
𝑃𝐺

The overlap can be ignored.

Even though 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
have overlap.  

If you do not have enough 
sampling ……



𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

……

JS divergence is log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier 
achieves 100% accuracy

Equally bad

Same objective value is obtained. Same divergence



Wasserstein distance

• Considering one distribution P as a pile of earth, 
and another distribution Q as the target

• The average distance the earth mover has to move 
the earth.

𝑃 𝑄

d

𝑊 𝑃,𝑄 = 𝑑



Wasserstein distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to 
define the Wasserstein distance.

There are many possible “moving plans”. 

Smaller 
distance?

Larger 
distance?



𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

𝑊 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑0

𝑊 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑1

𝑊 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

𝑑0 𝑑1

……

……

Better!



WGAN

𝑉 𝐺,𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

Evaluate wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

[Martin Arjovsky, et al., arXiv, 2017]

How to fulfill this constraint?D has to be smooth enough.

real

−∞

generated

D

∞
Without the constraint, the 
training of D will not converge.

Keeping the D smooth forces 
D(x) become ∞ and −∞



• Original WGAN → Weight Clipping [Martin Arjovsky, et al., 
arXiv, 2017]

• Improved WGAN → Gradient Penalty [Ishaan Gulrajani, 
NIPS, 2017]

• Spectral Normalization → Keep gradient norm 
smaller than 1 everywhere [Miyato, et al., ICLR, 2018]

Force the parameters w between c and -c

After parameter update, if w > c, w = c; if w < -c, w = -c

Keep the gradient close to 1

𝑉 𝐺,𝐷 = max
𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

real

samples

Keep the gradient 
close to 1

[Kodali, et al., arXiv, 2017]
[Wei, et al., ICLR, 2018]



Energy-based GAN (EBGAN)

• Using an autoencoder as discriminator D

Discriminator

0 for the 
best images

Generator is 
the same.

-
0.1

EN DE

Autoencoder

X -1 -0.1

[Junbo Zhao, et al., arXiv, 2016]

➢Using the negative reconstruction error of 
auto-encoder to determine the goodness

➢Benefit: The auto-encoder can be pre-train 
by real images without generator. 



Mode Collapse  

: real data

: generated data 

Training with too many iterations ……



Missing Mode?

BEGAN on CelebA

Generator 
at iteration t

Generator 
at iteration t+1

Generator 
at iteration t+2

Generator switches mode during training 



Ensemble

Generator
1

Generator
2

……

……

Train a set of generators: 𝐺1, 𝐺2, ⋯ , 𝐺𝑁

Random pick a generator 𝐺𝑖
Use 𝐺𝑖 to generate the image

To generate an image



Objective Evaluation

Off-the-shelf 
Image Classifier

𝑥 𝑃 𝑦|𝑥

Concentrated distribution 
means higher visual quality

CNN𝑥1 𝑃 𝑦1|𝑥1

Uniform distribution 
means higher variety

CNN𝑥2 𝑃 𝑦2|𝑥2

CNN𝑥3 𝑃 𝑦3|𝑥3

…

𝑃 𝑦 =
1

𝑁
෍

𝑛

𝑃 𝑦𝑛|𝑥𝑛

[Tim Salimans, et al., NIPS, 2016]

𝑥: image

𝑦: class (output of CNN)

e.g. Inception net, 
VGG, etc.

class 1

class 2

class 3



Objective Evaluation

=෍

𝑥

෍

𝑦

𝑃 𝑦|𝑥 𝑙𝑜𝑔𝑃 𝑦|𝑥

−෍

𝑦

𝑃 𝑦 𝑙𝑜𝑔𝑃 𝑦

Negative entropy of P(y|x)

Entropy of P(y)

Inception Score

𝑃 𝑦 =
1

𝑁
෍

𝑛

𝑃 𝑦𝑛|𝑥𝑛𝑃 𝑦|𝑥

class 1

class 2

class 3
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• Original Generator

• Conditional Generator

G

condition c

𝑧 𝑥 = 𝐺 𝑧

Normal 
Distribution G

𝑃𝐺 𝑥 → 𝑃𝑑𝑎𝑡𝑎 𝑥

𝑧

Normal 
Distribution 𝑥 = 𝐺 𝑐, 𝑧

𝑃𝐺 𝑥|𝑐 → 𝑃𝑑𝑎𝑡𝑎 𝑥|𝑐

[Mehdi Mirza, et al., arXiv, 2014]

NN
Generator

“Girl with red hair 
and red eyes”

“Girl with yellow 
ribbon”

e.g. Text-to-Image



Target of 
NN output

Text-to-Image

• Traditional supervised approach

NN Image

Text: “train”

a dog is running

a bird is flying

A blurry image!

c1: a dog is running

as close as 
possible



Conditional GAN

D 
(original)

scalar𝑥

G
𝑧Normal distribution

x = G(c,z)
c: train

x is real image or not

Image

Real images:

Generated images:

1

0

Generator will learn to 
generate realistic images ….

But completely ignore the 
input conditions.

[Scott Reed, et al, ICML, 2016]



Conditional GAN

D 
(better)

scalar
𝑐

𝑥

True text-image pairs:

G
𝑧Normal distribution

x = G(c,z)
c: train

Image

x is realistic or not + 
c and x are matched or not

(train ,              )

(train ,              )(cat ,              )

[Scott Reed, et al, ICML, 2016]

1

00



x is realistic or not + 
c and x are matched 
or not

Conditional GAN - Discriminator

[Takeru Miyato, et al., ICLR, 2018] 

[Han Zhang, et al., arXiv, 2017]

[Augustus Odena et al., ICML, 2017]

condition c

object x

Network
Network

Network

score

Network

Network

(almost every paper)

condition c

object x

c and x are matched 
or not

x is realistic or not



Conditional GAN

paired data 

blue eyes
red hair
short hair

Collecting anime faces 
and the description of its 
characteristics

red hair,
green eyes

blue hair,
red eyes

The images are generated by 
Yen-Hao Chen, Po-Chun Chien, 
Jun-Chen Xie, Tsung-Han Wu.



Conditional GAN - Image-to-image

G
𝑧

x = G(c,z)
𝑐

[Phillip Isola, et al., CVPR, 2017]

Image translation, or pix2pix



as close as 
possible

Conditional GAN - Image-to-image

• Traditional supervised approach

NN Image

It is blurry.

Testing:

input L1

e.g. L1

[Phillip Isola, et al., CVPR, 2017]



Conditional GAN - Image-to-image

Testing:

input L1 GAN

G
𝑧

Image D scalar

GAN + L1

L1

[Phillip Isola, et al., CVPR, 2017]



Conditional GAN 
- Video Generation

Generator

Discrimi
nator

Last frame is real 
or generated

Discriminator thinks it is real

[Michael Mathieu, et al., arXiv, 2015]



https://github.com/dyelax/Adversarial_Video_Generation



Domain Adversarial Training

• Training and testing data are in different domains

Training 
data:

Testing 
data:

Generator

Generator

The same 
distribution

feature

feature

Take digit 
classification as example



blue points

red points

Domain Adversarial Training

feature extractor (Generator)

Discriminator
(Domain classifier)

image Which domain?

Always output 
zero vectors

Domain Classifier Fails



Domain Adversarial Training

feature extractor (Generator)

Discriminator
(Domain classifier)

image

Label predictor

Which digits?

Not only cheat the domain 
classifier, but satisfying label 
predictor at the same time

More speech-related applications in Part II.

Successfully applied on image classification 
[Ganin et al, ICML, 2015][Ajakan et al. JMLR, 2016 ]

Which domain?
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Domain X Domain Y

male female

It is good.

It’s a good day.

I love you.

It is bad.

It’s a bad day.

I don’t love you.

Unsupervised Conditional Generation

Transform an object from one domain to another 
without paired data (e.g. style transfer)

Part II

Part III

GDomain X Domain Y



Unsupervised 
Conditional Generation
• Approach 1: Direct Transformation

• Approach 2: Projection to Common Space

?𝐺𝑋→𝑌

Domain X Domain Y

For texture or 
color change

𝐸𝑁𝑋 𝐷𝐸𝑌

Encoder of 
domain X

Decoder of 
domain Y

Larger change, only keep the semantics

Domain YDomain X Face
Attribute



?

Direct Transformation

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image 
belongs to 
domain Y or not

Become similar 
to domain Y



Direct Transformation

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image 
belongs to 
domain Y or not

Become similar 
to domain Y

Not what we want!

ignore input



Direct Transformation

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain X

scalar

Input image 
belongs to 
domain Y or not

Become similar 
to domain Y

Not what we want!

ignore input

[Tomer Galanti, et al. ICLR, 2018]

The issue can be avoided by network design.

Simpler generator makes the input and 
output more closely related.



Direct Transformation

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain X

scalar

Input image 
belongs to 
domain Y or not

Become similar 
to domain Y

Encoder
Network

Encoder
Network

pre-trained

as close as 
possible

Baseline of DTN [Yaniv Taigman, et al., ICLR, 2017] 



Direct Transformation 

𝐺𝑋→𝑌

𝐷𝑌

Domain Y

scalar

Input image 
belongs to 
domain Y or not

𝐺Y→X

as close as possible

Lack of information 
for reconstruction 

[Jun-Yan Zhu, et al., ICCV, 2017]

Cycle consistency



Direct Transformation 

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to 
domain Y or not

scalar: belongs to 
domain X or not



Cycle GAN

Dual GAN

Disco GAN

[Jun-Yan Zhu, et al., ICCV, 2017]

[Zili Yi, et al., ICCV, 2017] 

[Taeksoo Kim, et 

al., ICML, 2017]

For multiple domains, 
considering starGAN

[Yunjey Choi, arXiv, 2017]



Issue of Cycle Consistency

• CycleGAN: a Master of Steganography
[Casey Chu, et al., NIPS workshop, 2017] 

𝐺Y→X𝐺𝑋→𝑌

The information is hidden.



Unsupervised 
Conditional Generation
• Approach 1: Direct Transformation

• Approach 2: Projection to Common Space

?𝐺𝑋→𝑌

Domain X Domain Y

For texture or 
color change

𝐸𝑁𝑋 𝐷𝐸𝑌

Encoder of 
domain X

Decoder of 
domain Y

Larger change, only keep the semantics

Domain YDomain X Face
Attribute



Domain X Domain Y

𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

imageFace
Attribute

Projection to Common Space

Target



Domain X Domain Y

𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

Minimizing reconstruction error

Projection to Common Space
Training



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

Minimizing reconstruction error

Because we train two auto-encoders separately …

The images with the same attribute may not project 
to the same position in the latent space.

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Minimizing reconstruction error

Projection to Common Space
Training



Sharing the parameters of encoders and decoders

Projection to Common Space
Training

𝐸𝑁𝑋

𝐸𝑁𝑌

𝐷𝐸𝑋

𝐷𝐸𝑌

Couple GAN[Ming-Yu Liu, et al., NIPS, 2016]

UNIT[Ming-Yu Liu, et al., NIPS, 2017]



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

Minimizing reconstruction error

The domain discriminator forces the output of 𝐸𝑁𝑋 and 
𝐸𝑁𝑌 have the same distribution.

From 𝐸𝑁𝑋 or 𝐸𝑁𝑌

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space
Training

Domain
Discriminator

𝐸𝑁𝑋 and 𝐸𝑁𝑌 fool the 
domain discriminator

[Guillaume Lample, et al., NIPS, 2017]



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space
Training

Cycle Consistency:

Used in ComboGAN [Asha Anoosheh, et al., arXiv, 017]

Minimizing reconstruction error



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space
Training

Semantic Consistency:

Used in DTN [Yaniv Taigman, et al., ICLR, 2017] and 
XGAN [Amélie Royer, et al., arXiv, 2017]

To the same 
latent space



Outline of Part 1

Generation

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning



Basic Components 

EnvActor
Reward

Function

Video
Game

Go

Get 20 scores when 
killing a monster

The rule 
of GO

You cannot control



• Input of neural network: the observation of machine 
represented as a vector or a matrix

• Output neural network : each action corresponds to a 
neuron in output layer

……

NN as actor 

pixels
fire

right

left

Score of an 
action

0.7

0.2

0.1

Take the action 
based on the 
probability.

Neural network as Actor



Start with 
observation 𝑠1 Observation 𝑠2 Observation 𝑠3

Example: Playing Video Game

Action 𝑎1: “right”  

Obtain reward 
𝑟1 = 0

Action 𝑎2 : “fire”  

(kill an alien)

Obtain reward 
𝑟2 = 5



Start with 
observation 𝑠1 Observation 𝑠2 Observation 𝑠3

Example: Playing Video Game

After many turns

Action 𝑎𝑇

Obtain reward 𝑟𝑇

Game Over
(spaceship destroyed)

This is an episode.

We want the total 
reward be maximized.

Total reward: 

𝑅 =෍

𝑡=1

𝑇

𝑟𝑡



Actor, Environment, Reward 

𝜏 = 𝑠1, 𝑎1, 𝑠2, 𝑎2, ⋯ , 𝑠𝑇 , 𝑎𝑇

Trajectory

Actor

𝑠1

𝑎1

Env

𝑠2

Env

𝑠1

𝑎1

Actor

𝑠2

𝑎2

Env

𝑠3

𝑎2

……



Reward Function → Discriminator

Reinforcement Learning v.s. GAN

Actor

𝑠1

𝑎1

Env

𝑠2

Env

𝑠1

𝑎1

Actor

𝑠2

𝑎2

Env

𝑠3

𝑎2

……

𝑅 𝜏 =෍

𝑡=1

𝑇

𝑟𝑡

Reward

𝑟1

Reward

𝑟2

“Black box”
You cannot use 
backpropagation.

Actor → Generator Fixed

updatedupdated



Imitation Learning

We have demonstration of the expert.

Actor

𝑠1

𝑎1

Env

𝑠2

Env

𝑠1

𝑎1

Actor

𝑠2

𝑎2

Env

𝑠3

𝑎2

……

reward function is not available

Ƹ𝜏1, Ƹ𝜏2, ⋯ , Ƹ𝜏𝑁
Each Ƹ𝜏 is a trajectory 
of the expert.

Self driving: record 
human drivers

Robot: grab the 
arm of robot



Inverse Reinforcement Learning

Reward 
Function

Environment

Optimal 
Actor

Inverse Reinforcement 
Learning

➢Using the reward function to find the optimal actor.

➢Modeling reward can be easier. Simple reward 
function can lead to complex policy.

Reinforcement 
Learning

Expert

demonstration 
of the expert

Ƹ𝜏1, Ƹ𝜏2, ⋯ , Ƹ𝜏𝑁



Framework of IRL

Expert ො𝜋

Actor 𝜋

Obtain
Reward Function R

Ƹ𝜏1, Ƹ𝜏2, ⋯ , Ƹ𝜏𝑁

𝜏1, 𝜏2, ⋯ , 𝜏𝑁

Find an actor based 
on reward function R

By Reinforcement learning

෍

𝑛=1

𝑁

𝑅 Ƹ𝜏𝑛 > ෍

𝑛=1

𝑁

𝑅 𝜏

Reward function 
→ Discriminator

Actor 
→ Generator

Reward 
Function R

The expert is always 
the best.



𝜏1, 𝜏2, ⋯ , 𝜏𝑁

GAN

IRL

G

D

High score for real, 
low score for generated

Find a G whose output 
obtains large score from D

Ƹ𝜏1, Ƹ𝜏2, ⋯ , Ƹ𝜏𝑁
Expert

Actor

Reward 
Function

Larger reward for Ƹ𝜏𝑛,
Lower reward for 𝜏

Find a Actor obtains 
large reward



Concluding Remarks

Generation

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning



Reference

• Generation 
• Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial 
Networks, NIPS, 2014

• Sebastian Nowozin, Botond Cseke, Ryota Tomioka, “f-GAN: Training 
Generative Neural Samplers using Variational Divergence Minimization”, 
NIPS, 2016

• Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv, 
2017

• Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron 
Courville, Improved Training of Wasserstein GANs, NIPS, 2017

• Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based Generative 
Adversarial Network, arXiv, 2016 

• Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, 
“Are GANs Created Equal? A Large-Scale Study”, arXiv, 2017

• Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec 
Radford, Xi Chen Improved Techniques for Training GANs, NIPS, 2016

• Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, 
Sepp Hochreiter, GANs Trained by a Two Time-Scale Update Rule Converge 
to a Local Nash Equilibrium, NIPS, 2017



Reference

• Generation 
• Naveen Kodali, Jacob Abernethy, James Hays, Zsolt Kira, “On Convergence 

and Stability of GANs”, arXiv, 2017

• Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, Liqiang Wang, Improving the 
Improved Training of Wasserstein GANs: A Consistency Term and Its Dual 
Effect, ICLR, 2018

• Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral 
Normalization for Generative Adversarial Networks, ICLR, 2018



Reference

• Generational Generation
• Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, Honglak Lee, Generative Adversarial Text to Image Synthesis, ICML, 
2016

• Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-Image 
Translation with Conditional Adversarial Networks, CVPR, 2017

• Michael Mathieu, Camille Couprie, Yann LeCun, Deep multi-scale video 
prediction beyond mean square error, arXiv, 2015

• Mehdi Mirza, Simon Osindero, Conditional Generative Adversarial Nets, 
arXiv, 2014

• Takeru Miyato, Masanori Koyama, cGANs with Projection Discriminator, 
ICLR, 2018

• Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, Dimitris Metaxas, StackGAN++: Realistic Image Synthesis with 
Stacked Generative Adversarial Networks, arXiv, 2017

• Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image 
Synthesis With Auxiliary Classifier GANs, ICML, 2017



Reference

• Generational Generation
• Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by 

Backpropagation, ICML, 2015

• Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario 
Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016 



Reference

• Unsupervised Conditional Generation
• Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-

Image Translation using Cycle-Consistent Adversarial Networks, ICCV, 2017

• Zili Yi, Hao Zhang, Ping Tan, Minglun Gong, DualGAN: Unsupervised Dual 
Learning for Image-to-Image Translation, ICCV, 2017

• Tomer Galanti, Lior Wolf, Sagie Benaim, The Role of Minimal Complexity 
Functions in Unsupervised Learning of Semantic Mappings, ICLR, 2018

• Yaniv Taigman, Adam Polyak, Lior Wolf, Unsupervised Cross-Domain Image 
Generation, ICLR, 2017

• Asha Anoosheh, Eirikur Agustsson, Radu Timofte, Luc Van Gool, ComboGAN: 
Unrestrained Scalability for Image Domain Translation, arXiv, 2017

• Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar 
Mosseri, Forrester Cole, Kevin Murphy, XGAN: Unsupervised Image-to-
Image Translation for Many-to-Many Mappings, arXiv, 2017



Reference

• Unsupervised Conditional Generation
• Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic

Denoyer, Marc'Aurelio Ranzato, Fader Networks: Manipulating Images by 
Sliding Attributes, NIPS, 2017

• Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim, 
Learning to Discover Cross-Domain Relations with Generative Adversarial 
Networks, ICML, 2017

• Ming-Yu Liu, Oncel Tuzel, “Coupled Generative Adversarial Networks”, NIPS, 
2016

• Ming-Yu Liu, Thomas Breuel, Jan Kautz, Unsupervised Image-to-Image 
Translation Networks, NIPS, 2017

• Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, 
Jaegul Choo, StarGAN: Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation, arXiv, 2017



Generative Adversarial Network 
and its Applications to Signal Processing 

and Natural Language Processing

Part II: Speech Signal  
Processing



Outline of Part II

Speech Signal Generation

• Speech enhancement 

• Postfilter, speech synthesis, voice conversion

Speech Signal Recognition 

• Speech recognition 

• Speaker recognition

• Speech emotion recognition

• Lip reading  

Conclusion 



Speech Signal Generation (Regression Task)

G Output

Objective function

Paired



Speech, Speaker, Emotion Recognition and Lip-reading 
(Classification Task)

Output
label

Clean data

E

G

𝒚

෥𝒙

Emb.

Noisy data
𝒙

෤𝒛 = 𝑔(෥𝒙)

𝑔(∙)

ℎ(∙)

Accented 
speech

෭𝒙
Channel 

distortion

ෝ𝒙

Acoustic Mismatch 
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Speech Signal Recognition 

• Speech recognition 

• Speaker recognition

• Speech emotion recognition

• Lip reading  

Conclusion 



Speech Enhancement

• Typical objective function 

• Typical objective function 
➢ Mean square error (MSE) [Xu et al., TASLP 2015], L1 [Pascual et al., Interspeech

2017], likelihood [Chai et al., MLSP 2017], STOI [Fu et al., TASLP 2018].

Enhancing

G Output

Objective function

➢ GAN is used as a new objective function to estimate the parameters in G.

➢Model structures of G: DNN [Wang et al. NIPS 2012; Xu et al., SPL 2014], DDAE 
[Lu et al., Interspeech 2013], RNN (LSTM) [Chen et al., Interspeech 2015;
Weninger et al., LVA/ICA 2015], CNN [Fu et al., Interspeech 2016]. 



Speech Enhancement
• Speech enhancement GAN (SEGAN) [Pascual et al., Interspeech 2017]

z



Table 1: Objective evaluation results. Table 2: Subjective evaluation results.

Fig. 1: Preference test results.

Speech Enhancement (SEGAN)

SEGAN yields better speech enhancement results than Noisy and Wiener.

• Experimental results 



• Pix2Pix [Michelsanti et al., Interpsech 2017]

D Scalar

Clean

Noisy

(Fake/Real)

Output

Noisy

G

Noisy Output Clean

Speech Enhancement



Fig. 2: Spectrogram comparison of Pix2Pix with baseline methods.

Speech Enhancement (Pix2Pix)
• Spectrogram analysis 

Pix2Pix outperforms STAT-MMSE and is competitive to DNN SE.

NG-DNN STAT-MMSE

Noisy Clean NG-Pix2Pix



Table 3: Objective evaluation results.

Speech Enhancement (Pix2Pix)
• Objective evaluation and speaker verification test

Table 4: Speaker verification results. 

1.  From the objective evaluations, Pix2Pix outperforms Noisy and 
MMSE and is competitive to DNN SE.

2.  From the speaker verification results, Pix2Pix outperforms the 
baseline models when the clean training data is used.



• Frequency-domain SEGAN (FSEGAN) [Donahue et al., ICASSP 2018]

D Scalar

Clean

Noisy

(Fake/Real)

Output

Noisy

G

Noisy Output Clean

Speech Enhancement



Fig. 2: Spectrogram comparison of FSEGAN with L1-trained method.

Speech Enhancement (FSEGAN)
• Spectrogram analysis 

FSEGAN reduces both additive noise and reverberant smearing.



Table 5: WER (%) of SEGAN and FSEGAN. Table 6: WER (%) of FSEGAN with retrain.

Speech Enhancement (FSEGAN)
• ASR results

1. From Table 5, (1) FSEGAN improves recognition results for ASR-Clean.
(2) FSEGAN outperforms SEGAN as front-ends.

2. From Table 6, (1) Hybrid Retraining with FSEGAN outperforms Baseline; 
(2) FSEGAN retraining slightly underperforms L1–based retraining.



= 𝐸𝒔𝑓𝑎𝑘𝑒 log(1 − 𝑫𝑺 𝒔𝑓𝑎𝑘𝑒 , 𝜃 )

+𝐸𝒏𝑓𝑎𝑘𝑒 log(1 − 𝑫𝑵 𝒏𝑓𝑎𝑘𝑒 , 𝜃 )

• Adversarial training based mask estimation (ATME) 
[Higuchi et al., ASRU 2017]

Speech Enhancement

Estimated 
speech

𝑫𝑵𝑫𝑺

𝑮𝑴𝒂𝒔𝒌

Clean speech 
data

Noise data

Noisy data

Estimated 
noise

True noiseTrue speech

Noisy speech

True or FakeTrue or Fake

𝑉𝑀𝑎𝑠𝑘

or or 



Fig. 3: Spectrogram comparison of (a) noisy; (b) MMSE with 
supervision; (c) ATMB without supervision.

Speech Enhancement (ATME)
• Spectrogram analysis 

The proposed adversarial training mask estimation can 
capture speech/noise signals without supervised data.

Speech mask Noise mask 𝑀𝑓,𝑡
𝑛



➢ The estimated mask parameters are used to compute spatial covariance 
matrix for MVDR beamformer.

➢ Ƹ𝑠𝑓,𝑡= 𝐰𝑓
H 𝐲𝑓,𝑡 ,  where Ƹ𝑠𝑓,𝑡 is the enhanced signal, and 𝐲𝑓,𝑡 denotes the 

observation of M microphones, 𝑓 and 𝑡 are frequency and time indices; 
𝐰𝑓 denotes the beamformer coefficient. 

➢ The MVDR solves 𝐰𝑓 by: 𝐰𝑓= 
(𝑅𝑓

𝑠+𝑛
)−1 𝐡𝑓

𝐡𝑓
H (𝑅𝑓

𝑠+𝑛
)−1 𝐡𝑓

➢ To estimate 𝐡𝑓, the spatial covariance matrix of the target signal, 𝑅𝑓
𝑠

, is 

computed by : 𝑅𝑓
𝑠
= 𝑅𝑓

𝑠+𝑛
－𝑅𝑓

𝑛
, where 𝑅𝑓

𝑛
= 
𝑀𝑓,𝑡

𝑛
𝐲𝑓,𝑡 𝐲𝑓,𝑡

H

σ𝑓,𝑡𝑀𝑓,𝑡
𝑛 , 𝑀𝑓,𝑡

𝑛
was 

computed by AT.

• Mask-based beamformer for robust ASR

Speech Enhancement (ATME)



Table 7: WERs (%) for the development and evaluation sets.

• ASR results 

Speech Enhancement (ATME)

1. ATME provides significant improvements over Unprocessed. 
2. Unsupervised ATME slightly underperforms supervised MMSE.



𝐺𝑆→𝑇 𝐺𝑇→𝑆

as close as possible

𝐷𝑇
Scalar: belongs to 
domain T or not

𝐺𝑇→𝑆 𝐺𝑆→𝑇

as close as possible

𝐷𝑆
Scalar: belongs to 
domain S or not

Speech Enhancement (AFT) 
• Cycle-GAN-based acoustic feature transformation (AFT) 

[Mimura et al., ASRU 2017]

𝑉𝐹𝑢𝑙𝑙 = 𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌 ＋𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌
＋𝜆 𝑉𝐶𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋)

Noisy Enhanced Noisy

Clean Syn. Noisy Clean



• ASR results on noise robustness and style adaptation

Table 8: Noise robust ASR. Table 9: Speaker style adaptation.

1. 𝐺𝑇→𝑆 can transform acoustic features and effectively improve 
ASR results for both noisy and accented speech. 

2. 𝐺𝑆→𝑇 can be used for model adaptation and effectively improve 
ASR results for noisy speech.

S: Clean; 𝑇: Noisy JNAS: Read; CSJ-SPS: Spontaneous (relax);
CSJ-APS: Spontaneous (formal);

Speech Enhancement (AFT) 
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• Postfilter for synthesized or transformed speech

➢ Conventional postfilter approaches for G estimation include global variance 
(GV) [Toda et al., IEICE 2007], variance scaling (VS) [Sil’en et al., Interpseech
2012], modulation spectrum (MS) [Takamichi et al., ICASSP 2014],DNN with 
MSE criterion [Chen et al., Interspeech 2014; Chen et al., TASLP 2015].

➢ GAN is used a new objective function to estimate the parameters in G.

Postfilter

Synthesized 
spectral texture 

Natural 
spectral texture 

G Output

Objective function

Speech 
synthesizer 

Voice 
conversion

Speech
enhancement 



• GAN postfilter [Kaneko et al., ICASSP 2017]

➢ Traditional MMSE criterion results in statistical averaging. 

➢ GAN is used as a new objective function to estimate the parameters in G.

➢ The proposed work intends to further improve the naturalness of 
synthesized speech or parameters from a synthesizer.  

Postfilter

Synthesized 
Mel cepst. coef. 

Natural 
Mel cepst. coef. 

D

Nature
or

Generated

Generated 
Mel cepst. coef. 

G



Fig. 4: Spectrograms of: (a) NAT (nature); (b) SYN (synthesized); (c) VS (variance 
scaling); (d) MS (modulation spectrum); (e) MSE; (f) GAN postfilters.

Postfilter (GAN-based Postfilter)
• Spectrogram analysis 

GAN postfilter reconstructs spectral texture similar to the natural one.



Fig. 5: Mel-cepstral trajectories (GANv: 
GAN was applied in voiced part).

Fig. 6: Averaging difference in 
modulation spectrum per Mel-
cepstral coefficient. 

Postfilter (GAN-based Postfilter)
• Objective evaluations

GAN postfilter reconstructs spectral texture similar to the natural one.



Table 10: Preference score (%). Bold font indicates the numbers over 30%.

Postfilter (GAN-based Postfilter)

• Subjective evaluations

1. GAN postfilter significantly improves the synthesized speech. 
2. GAN postfilter is effective particularly in voiced segments. 
3. GANv outperforms GAN and is comparable to NAT.



Postfilter (GAN-postfilter-SFTF)
• GAN post-filter for STFT spectrograms [Kaneko et al., 

Interspeech 2017]

➢ GAN postfilter was applied on high-dimensional STFT spectrograms.
➢ The spectrogram was partitioned into N bands (each band overlaps its 

neighboring bands). 
➢ The GAN-based postfilter was trained for each band. 
➢ The reconstructed spectrogram from each band was smoothly connected.



• Spectrogram analysis 

Fig. 7: Spectrograms of: (1) SYN, (2) GAN, (3) Original (NAT)

Postfilter (GAN-postfilter-SFTF)

GAN postfilter reconstructs spectral texture similar to the natural one.



Speech Synthesis
• Input: linguistic features; Output: speech parameters 

𝒄ො𝒄

𝑮𝑺𝑺
Natural 
speech 

parameters

Generated
speech 

parameters

Linguistic 
features

sp sp

Objective function

Minimum 
generation error 
(MGE), MSE

• Speech synthesis with anti-spoofing verification (ASV) 
[Saito et al., ICASSP 2017]

𝐿𝐷 𝒄, ො𝒄 = 𝐿𝐷,1 𝒄 +𝐿𝐷,0 ො𝒄
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Fig. 8: Averaged GVs of MCCs.

Speech Synthesis (ASV)
• Objective and subjective evaluations

1. The proposed algorithm generates MCCs similar to the natural ones. 

Fig. 9: Scores of speech quality.

2. The proposed algorithm outperforms conventional MGE training.



• Speech synthesis with GAN (SS-GAN) [Saito et al., TASLP 2018]

𝐿𝐷 𝒄, ො𝒄 = 𝐿𝐷,1 𝒄 +𝐿𝐷,0 ො𝒄

𝐿𝐷,1 𝒄 = −
1

𝑇
σ𝑡=1
𝑇 log(𝐷 𝒄𝑡 )…NAT

𝐿𝐷,0 ො𝒄 = −
1

𝑇
σ𝑡=1
𝑇 log(1 −𝐷 ො𝒄𝑡 )…SYN

𝐿 𝒄, ො𝒄 = 𝐿𝐺 𝒄, ො𝒄 +𝜔𝐷

𝐸𝐿𝐺
𝐸𝐿𝐷

𝐿𝐷,1 ො𝒄

Minimum generation error (MGE) 
with adversarial loss.

𝒄ො𝒄

Speech Synthesis

𝑮𝑺𝑺
Natural 
speech 

parameters

Generated
speech 

parameters

Gen.

Nature
𝑫𝝓(∙)

Linguistic 
features

𝑫𝑨𝑺𝑽

sp, f0, duration sp, f0, duration 

MGE



Fig. 11: Scores of speech quality
(sp and F0).

.

Speech Synthesis (SS-GAN)

• Subjective evaluations

Fig. 10: Scores of speech quality (sp).

The proposed algorithm works for both spectral parameters and F0.



Speech Synthesis

G
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𝑫
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• Speech synthesis with GAN glottal waveform model 
(GlottGAN) [Bollepalli et al., Interspeech 2017]

Glottal waveform Glottal waveform



• Objective evaluations

Speech Synthesis (GlottGAN) 

The proposed GAN-based approach can generate glottal 
waveforms similar to the natural ones.

Fig. 12: Glottal pulses generated by GANs.

G, D: DNN

G, D: conditional DNN

G, D: Deep CNN

G, D: Deep CNN + LS loss 



• Speech synthesis with GAN & multi-task learning 
(SS-GAN-MTL) [Yang et al., ASRU 2017]

𝒙ෝ𝒙

Speech Synthesis

𝑮𝑺𝑺
Natural 
speech 

parameters

Generated
speech 

parameters

Gen.

Nature
𝑫

Noise

𝒛

𝒚

𝑉𝐺𝐴𝑁 𝐺,𝐷 = 𝐸𝒙~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔𝐷 𝒙|𝒚

+ 𝐸𝒛~𝑝𝑧, log(1 − 𝐷 𝐺 𝒛|𝒚 |𝒚

𝑉𝐿2 𝐺 = 𝐸𝒛~𝑝𝑧,[𝐺 𝒛|𝒚 − 𝒙]2

Linguistic 
features

MSE



• Speech synthesis with GAN & multi-task learning 
(SS-GAN-MTL) [Yang et al., ASRU 2017]

Speech Synthesis (SS-GAN-MTL) 
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• Objective and subjective evaluations

Table 11: Objective evaluation results. Fig. 13: The preference score (%).

Speech Synthesis (SS-GAN-MTL)

1. From objective evaluations, no remarkable difference is observed. 
2. From subjective evaluations, GAN outperforms BLSTM and ASV, 

while GAN-PC underperforms GAN. 



• Convert (transform) speech from source to target

➢ Conventional VC approaches include Gaussian mixture model (GMM) [Toda 
et al., TASLP 2007], non-negative matrix factorization (NMF) [Wu et al., TASLP 
2014; Fu et al., TBME 2017], locally linear embedding (LLE) [Wu et al., 
Interspeech 2016], restricted Boltzmann machine (RBM) [Chen et al., TASLP 
2014], feed forward NN [Desai et al., TASLP 2010], recurrent NN (RNN) 
[Nakashika et al., Interspeech 2014].

Voice Conversion 

G Output

Objective function

Target 
speaker

Source 
speaker



• VAW-GAN [Hsu et al., Interspeech 2017]

➢Conventional MMSE approaches often encounter the “over-smoothing” issue.

➢ GAN is used a new objective function to estimate G.

➢ The goal is to increase the naturalness, clarity, similarity of converted speech. 

Voice Conversion 

D

Real
or

Fake
G

Target 
speaker

Source 
speaker

𝑉 𝐺, 𝐷 = 𝑉𝐺𝐴𝑁 𝐺, 𝐷 + 𝜆 𝑉𝑉𝐴𝐸 𝒙|𝒚



• Objective and subjective evaluations

Fig. 15: MOS on naturalness.Fig. 14: The spectral envelopes.

Voice Conversion (VAW-GAN)

VAW-GAN outperforms VAE in terms of objective and subjective 
evaluations with generating more structured speech.



Voice Conversion 
• Sequence-to-sequence VC with learned similarity metric 

(LSM) [Kaneko et al., Interspeech 2017]
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• Spectrogram analysis 

Fig. 16: Comparison of MCCs (upper) and STFT spectrograms (lower).

Voice Conversion (LSM)

Source Target FVC MSE(S2S) LSM(S2S)

The spectral textures of LSM are more similar to the target ones.



• Subjective evaluations

Table 12: Preference scores for naturalness.

Table 12: Preference scores for clarity.

Fig. 17: Similarity of TGT and SRC with VCs.

Voice Conversion (LSM)

LSM outperforms FVC and MSE in terms of subjective evaluations.

Target 
speaker

Source 
speaker



• CycleGAN-VC [Kaneko et al., arXiv 2017]

• used a new objective function to estimate G

𝑉𝐹𝑢𝑙𝑙 = 𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌 ＋𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌
＋𝜆 𝑉𝐶𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋)

Voice Conversion

𝑮𝑺→𝑻 𝐺𝑇→𝑆

as close as possible

𝑫𝑻
Scalar: belongs to 
domain T or not

Scalar: belongs to 
domain S or not

𝐺𝑇→𝑆 𝑮𝑺→𝑻

as close as possible

𝑫𝑺

Target Syn. Source Target

Source Syn. Target Source



• Subjective evaluations

Fig. 18: MOS for naturalness.

Fig. 19: Similarity of to source and 
to target speakers. S: Source; 
T:Target; P: Proposed; B:Baseline

Voice Conversion (CycleGAN-VC)

1. The proposed method uses non-parallel data.
2. For naturalness, the proposed method outperforms baseline.

3. For similarity, the proposed method is comparable to the baseline.

Target 
speaker

Source 
speaker



• Multi-target VC [Chou et al., arxiv 2018]
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• Subjective evaluations

Voice Conversion (Multi-target VC) 

Fig. 20: Preference test results  

1. The proposed method uses non-parallel data.
2. The multi-target VC approach outperforms one-stage only.

3. The multi-target VC approach is comparable to Cycle-GAN-VC in 
terms of the naturalness and the similarity.
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Speech Recognition 
• Adversarial multi-task learning (AMT) 

[Shinohara Interspeech 2016]
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• ASR results in known (k) and unknown (unk) 
noisy conditions

Speech Recognition (AMT) 

Table 13: WER of DNNs with single-task learning (ST) and AMT. 

The AMT-DNN outperforms ST-DNN with yielding lower WERs.



Speech Recognition 
• Domain adversarial training for accented ASR (DAT) 

[Sun et al., ICASSP2018]
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• ASR results on accented speech

Speech Recognition (DAT) 

1. With labeled transcriptions, ASR performance notably improves. 

Table 14: WER of the baseline and adapted model. 

2. DAT is effective in learning features invariant to domain differences 
with and without labeled transcriptions.

STD: standard speech



Speech Recognition 
• Robust ASR using GAN enhancer (GAN-Enhancer) 

[Sriram et al., arXiv 2017]
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• ASR results on far-field speech:

Speech Recognition (GAN-Enhancer)

GAN Enhancer outperforms the Augmentation and L1-
Enhancer approaches on far-field speech. 

Fig. 15: WER of GAN enhancer and the baseline methods.
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Speaker Recognition 
• Domain adversarial neural network (DANN) 

[Wang et al., ICASSP 2018]
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• Recognition results of domain mismatched conditions

Table 16: Performance of DAT and the state-of-the-art methods.

Speaker Recognition (DANN) 

The DAT approach outperforms other methods with 
achieving lowest EER and DCF scores. 
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Emotion Recognition 
• Adversarial AE for emotion recognition (AAE-ER) 

[Sahu et al., Interspeech 2017]

AE with GAN : 
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• Recognition results of domain mismatched conditions:

Table 18: Classification results on real and synthesized features.

Emotion Recognition (AAE-ER) 

Table 17: Classification results on different systems.

1. AAE alone could not yield performance improvements.
2. Using synthetic data from AAE can yield higher UAR. 

Original
Training 

data
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Lip-reading
• Domain adversarial training for lip-reading (DAT-LR) 

[Wand et al., arXiv 2017]
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• Recognition results of speaker mismatched conditions

Lip-reading (DAT-LR) 

Table 19: Performance of DAT and the baseline.

The DAT approach notably enhances the recognition 
accuracies in different conditions. 



Outline of Part II

Speech Signal Generation

• Speech enhancement 

• Postfilter, speech synthesis, voice conversion

Speech Signal Recognition 

• Speech recognition 

• Speaker recognition

• Speech emotion recognition

• Lip reading  

Conclusion 



Speech Signal Generation (Regression Task)

G Output

Objective function

Paired



Speech, Speaker, Emotion Recognition and Lip-reading 
(Classification Task)

Output
label

Clean data

E

G

𝒚

෥𝒙

Emb.

Noisy data
𝒙

෤𝒛 = 𝑔(෥𝒙)

𝑔(∙)

ℎ(∙)

Accented 
speech

෭𝒙
Channel 

distortion

ෝ𝒙

Acoustic Mismatch 



More GANs in Speech 

Diagnosis of autism spectrum
Jun Deng, Nicholas Cummins, Maximilian Schmitt, Kun Qian, Fabien Ringeval, and Björn Schuller, Speech-based
Diagnosis of Autism Spectrum Condition by Generative Adversarial Network Representations, ACM DH, 2017.

Emotion recognition
Jonathan Chang, and Stefan Scherer, Learning Representations of Emotional Speech with Deep Convolutional
Generative Adversarial Networks, ICASSP, 2017.

Robust ASR
Dmitriy Serdyuk, Kartik Audhkhasi, Philémon Brakel, Bhuvana Ramabhadran, Samuel Thomas, and Yoshua Bengio,
Invariant Representations for Noisy Speech Recognition, arXiv, 2016.

Speaker verification
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A promising research direction and still has room for further 
improvements in the speech signal processing domain 

Thank You Very Much

Tsao, Yu   Ph.D.
yu.tsao@citi.sinica.edu.tw
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Conditional Sequence Generation

Generator

機 器 學 習

Generator

Machine Learning

Generator

How are you?

How are you I am fine.

ASR Translation Chatbot

The generator is a typical seq2seq model.

With GAN, you can train seq2seq model in another way. 



Review: Sequence-to-sequence

• Chat-bot as example

Encoder Decoder

Input sentence c

output 
sentence x

Training 
data:

A: How are you ?

B: I’m good.

…
…

…
…

How are you ?

I’m good.

Generator

Output: Not bad I’m John.

Maximize 
likelihood

Training Criterion

Human better

better
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Introduction

• Machine obtains feedback from user

• Chat-bot learns to maximize the expected reward

https://image.freepik.com/free-vector/variety-
of-human-avatars_23-2147506285.jpg

How are 
you?

Bye bye ☺

Hello

Hi ☺

-10 3

http://www.freepik.com/free-vector/variety-
of-human-avatars_766615.htm



Maximizing Expected Reward

Human

Input sentence c response sentence x

Chatbot

En De

response sentence x

Input sentence c

[Li, et al., EMNLP, 2016]

reward

𝑅 𝑐, 𝑥

Learn to maximize expected reward 

Policy Gradient



Policy Gradient - Implemenation

𝜃𝑡

𝑐1, 𝑥1

𝑐2, 𝑥2

𝑐𝑁 , 𝑥𝑁

…
…

𝑅 𝑐1, 𝑥1

𝑅 𝑐2, 𝑥2

𝑅 𝑐𝑁, 𝑥𝑁

…
…

1

𝑁
෍

𝑖=1

𝑁

𝑅 𝑐𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃𝑡 𝑥
𝑖|𝑐𝑖

𝜃𝑡+1 ← 𝜃𝑡 + 𝜂𝛻 ത𝑅𝜃𝑡

𝑅 𝑐𝑖 , 𝑥𝑖 is positive

Updating 𝜃 to increase 𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑅 𝑐𝑖 , 𝑥𝑖 is negative

Updating 𝜃 to decrease 𝑃𝜃 𝑥𝑖|𝑐𝑖



Comparison

1

𝑁
෍

𝑖=1

𝑁

𝑅 𝑐𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖

1

𝑁
෍

𝑖=1

𝑁

𝑙𝑜𝑔𝑃𝜃 ො𝑥𝑖|𝑐𝑖

1

𝑁
෍

𝑖=1

𝑁

𝛻𝑙𝑜𝑔𝑃𝜃 ො𝑥𝑖|𝑐𝑖

1

𝑁
෍

𝑖=1

𝑁

𝑅 𝑐𝑖 , 𝑥𝑖 𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑅 𝑐𝑖 , ො𝑥𝑖 = 1 obtained from interaction

weighted by 𝑅 𝑐𝑖 , 𝑥𝑖

Objective
Function

Gradient

Maximum 
Likelihood

Reinforcement 
Learning

Training 
Data

𝑐1, ො𝑥1 , … , 𝑐𝑁, ො𝑥𝑁 𝑐1, 𝑥1 , … , 𝑐𝑁, 𝑥𝑁
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Improving Supervised Seq-to-seq Model

• RL (human feedback)

• GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

• Text Style Transfer

• Unsupervised Abstractive Summarization

• Unsupervised Translation

I am busy.



Conditional GAN

Discriminator

Input sentence c response sentence x

Real or fake

http://www.nipic.com/show/3/83/3936650kd7476069.html

human 
dialogues

Chatbot

En De

response sentence x

Input sentence c

[Li, et al., EMNLP, 2017]

“reward”



Algorithm

• Initialize generator G (chatbot) and discriminator D

• In each iteration:

• Sample input c and response 𝑥 from training set

• Sample input 𝑐′ from training set, and generate 
response ෤𝑥 by G(𝑐′)

• Update D to increase 𝐷 𝑐, 𝑥 and decrease 𝐷 𝑐′, ෤𝑥

• Update generator G (chatbot) such that

Discrimi
nator

scalar

update

Training data:

𝑐
Chatbot

En De

Pairs of conditional input c 
and response x



A A

A

B

A

B

A

A

B

B

B

<BOS>

Can we use 
gradient ascent?

Due to the sampling process, “discriminator+ generator” 
is not differentiable 

Discriminator

Discrimi
nator

scalar

update

scalarChatbot

En De

NO!
Update Parameters



Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen 
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 
2017]

“Reinforcement Learning”

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William 
Fedus, et al., ICLR, 2018]



A A

A

B

A

B

A

A

B

B

B

<BOS>

Use the distribution 
as the input of 
discriminator

Avoid the sampling 
process

Discriminator

Discrimi
nator

scalar

update

scalarChatbot

En De

Update Parameters
We can do 
backpropagation 
now.



What is the problem?

• Real sentence

• Generated

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0.9

0.1

0

0

0

0.1

0.9

0

0

0

0.1

0.1

0.7

0.1

0

0

0

0.1

0.8

0.1

0

0

0

0.1

0.9

Can never 
be 1-of-N

Discriminator can 
immediately find 
the difference.

WGAN is helpful



Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen 
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 
2017]

“Reinforcement Learning”

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William 
Fedus, et al., ICLR, 2018]



Reinforcement Learning?

• Consider the output of discriminator as reward 

• Update generator to increase discriminator = to get 
maximum reward

• Using the formulation of policy gradient, replace reward 
𝑅 𝑐, 𝑥 with discriminator output D 𝑐, 𝑥

• Different from typical RL

• The discriminator would update

Discrimi
nator

scalar

update
Chatbot

En De



𝜃𝑡

𝑐1, 𝑥1

𝑐2, 𝑥2

𝑐𝑁 , 𝑥𝑁

…
…

…
…

g-step

d-step
discriminator

𝑐
𝑥

fake real

𝑅 𝑐1, 𝑥1

𝑅 𝑐2, 𝑥2

𝑅 𝑐𝑁 , 𝑥𝑁

𝐷 𝑐1, 𝑥1

𝐷 𝑐2, 𝑥2

𝐷 𝑐𝑁 , 𝑥𝑁

1

𝑁
෍

𝑖=1

𝑁

𝑅 𝑐𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃𝑡 𝑥
𝑖|𝑐𝑖

𝜃𝑡+1 ← 𝜃𝑡 + 𝜂𝛻 ത𝑅𝜃𝑡

𝑅 𝑐𝑖 , 𝑥𝑖 is positive

Updating 𝜃 to increase 𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑅 𝑐𝑖 , 𝑥𝑖 is negative

Updating 𝜃 to decrease 𝑃𝜃 𝑥𝑖|𝑐𝑖

𝐷 𝑐𝑖 , 𝑥𝑖

𝐷 𝑐𝑖 , 𝑥𝑖

𝐷 𝑐𝑖 , 𝑥𝑖

D



Reward for Every Generation Step

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝐷 𝑐𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑐𝑖 = “What is your name?”

𝑥𝑖 = “I don’t know”

𝐷 𝑐𝑖 , 𝑥𝑖 is negative

Update 𝜃 to decrease log𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |𝑐𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |𝑐𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |𝑐𝑖 , 𝑥1:2
𝑖

𝑃 "𝐼"|𝑐𝑖

𝑐𝑖 = “What is your name?”

𝑥𝑖 = “I am John”

𝐷 𝑐𝑖 , 𝑥𝑖 is positive

Update 𝜃 to increase log𝑃𝜃 𝑥𝑖|𝑐𝑖

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |𝑐𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |𝑐𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |𝑐𝑖 , 𝑥1:2
𝑖

𝑃 "𝐼"|𝑐𝑖



Reward for Every Generation Step

Method 2. Discriminator For Partially Decoded Sequences

𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|ℎ𝑖 = 𝑙𝑜𝑔𝑃 𝑥1
𝑖 |𝑐𝑖 + 𝑙𝑜𝑔𝑃 𝑥2

𝑖 |𝑐𝑖 , 𝑥1
𝑖 + 𝑙𝑜𝑔𝑃 𝑥3

𝑖 |𝑐𝑖 , 𝑥1:2
𝑖

ℎ𝑖 = “What is your name?” 𝑥𝑖 = “I don’t know”

𝑃 "𝐼"|𝑐𝑖 𝑃 "𝑑𝑜𝑛′𝑡"|𝑐𝑖 , "𝐼" 𝑃 "𝑘𝑛𝑜𝑤"|𝑐𝑖 , "𝐼 𝑑𝑜𝑛′𝑡"

Method 1. Monte Carlo (MC) Search

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=1

𝑇

𝑄 𝑐𝑖 , 𝑥1:𝑡
𝑖 − 𝑏 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑡

𝑖|𝑐𝑖 , 𝑥1:𝑡−1
𝑖

𝛻 ത𝑅𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

𝐷 𝑐𝑖 , 𝑥𝑖 𝛻𝑙𝑜𝑔𝑃𝜃 𝑥𝑖|𝑐𝑖

[Yu, et al., AAAI, 2017]

[Li, et al., EMNLP, 2017]



Find more comparison in the survey papers. 
[Lu, et al., arXiv, 2018][Zhu, et al., arXiv, 2018]

Input We've got to look for another route.

MLE I'm sorry.

GAN You're not going to be here for a while.

Input You can save him by talking.

MLE I don't know.

GAN You know what's going on in there, you know what I 
mean?

• MLE frequently generates “I’m sorry”, “I don’t know”, etc. 
(corresponding to fuzzy images?) 

• GAN generates longer and more complex responses 
(however, no strong evidence shows that they are better)

Experimental Results



More Applications

• Supervised machine translation [Wu, et al., arXiv
2017][Yang, et al., arXiv 2017]

• Supervised abstractive summarization [Liu, et al., AAAI 
2018]

• Image/video caption generation [Rakshith Shetty, et al., ICCV 
2017][Liang, et al., arXiv 2017]

If you are using seq2seq models, 
consider to improve them by GAN.
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Text Style Transfer

Domain X Domain Y

male female

It is good.

It’s a good day.

I love you.

It is bad.

It’s a bad day.

I don’t love you.

positive sentences negative sentences



Direct Transformation

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to 
domain Y or not

scalar: belongs to 
domain X or not



Direct Transformation

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋negative sentence? positive sentence?

It is bad. It is good. It is bad.

I love you. I hate you. I love you.
positive

positive

positivenegative

negative negative



Direct Transformation

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋negative sentence? positive sentence?

It is bad. It is good. It is bad.

I love you. I hate you. I love you.
positive

positive

positivenegative

negative negative

Word embedding
[Lee, et al., ICASSP, 2018]

Discrete?



• Negative sentence to positive sentence:
it's a crappy day  → it's a great day
i wish you could be here → you could be here
it's not a good idea → it's good idea
i miss you → i love you
i don't love you → i love you
i can't do that → i can do that
i feel so sad → i happy
it's a bad day → it's a good day
it's a dummy day → it's a great day
sorry for doing such a horrible thing → thanks for doing a 
great thing
my doggy is sick → my doggy is my doggy
my little doggy is sick → my little doggy is my little doggy

Title: SCALABLE SENTIMENT FOR SEQUENCE-TO-SEQUENCE CHATBOT RESPONSE WITH PERFORMANCE ANALYSIS

Session: Dialog Systems and Applications

Time: Wednesday, April 18, 08:30 - 10:30

Authors: Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-Shan Lee



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋 𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋 𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space

Positive
Sentence

Positive
Sentence

Negative
Sentence

Negative
Sentence

Decoder hidden layer as discriminator input 
[Shen, et al., NIPS, 2017]

From 𝐸𝑁𝑋 or 𝐸𝑁𝑌
Domain

Discriminator

𝐸𝑁𝑋 and 𝐸𝑁𝑌 fool the 
domain discriminator

[Zhao, et al., arXiv, 2017]

[Fu, et al., AAAI, 2018]



Outline of Part III

Improving Supervised Seq-to-seq Model

• RL (human feedback)

• GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

• Text Style Transfer

• Unsupervised Abstractive Summarization

• Unsupervised Translation



Abstractive Summarization

• Now machine can do abstractive summary by 
seq2seq (write summaries in its own words)

summary 1

summary 2

summary 3

Training Data

summary

seq2seq
(in its own words)

Supervised: We need lots of 
labelled training data.



Unsupervised Abstractive 
Summarization

1 2
Summary?

Seq2seq Seq2seq

long 
document

long 
document

short 
document

The two seq2seq models are jointly learn to 
minimize the reconstruction error.

Only need a lot 
of documents to 
train the model



Unsupervised Abstractive 
Summarization

1 2
Summary?

Seq2seq Seq2seq

long 
document

long 
document

short 
document

This is a seq2seq2seq auto-encoder.

Using a sequence of words as latent representation.

not readable …
Policy gradient is used.



Unsupervised Abstractive 
Summarization

1 2
Summary?

Seq2seq Seq2seq

long 
document

long 
document

short 
document

3

Human written summaries Real or not

Discriminator
Let Discriminator considers 

my output as real



Semi-supervised Learning

(unpublished)
unsupervised

semi-supervised



Outline of Part III

Improving Supervised Seq-to-seq Model

• RL (human feedback)

• GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

• Text Style Transfer

• Unsupervised Abstractive Summarization

• Unsupervised Translation



Unsupervised Machine Translation

Domain X Domain Y

male female

positive sentences

[Alexis Conneau, et al., ICLR, 2018]
[Guillaume Lample, et al., ICLR, 2018]



Unsupervised learning 
with 10M sentences

Supervised learning with 
100K sentence pairs

=

supervised

unsupervised



Unsupervised Speech Recognition

The dog is …… 

The cats  are …… 

The woman is …… 

The man is …… 

The cat is …… Cycle GAN

“The”=

Acoustic Pattern Discovery

Can we achieve 
unsupervised speech 
recognition?

p1

p1 p3 p2

p1 p4 p3 p5 p5

p1 p5 p4 p3

p1 p2 p3 p4

[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 2018]



Unsupervised Speech Recognition

• Phoneme recognition
Audio: TIMIT
Text: WMT

supervised

WGAN-GP

Gumbel-softmax



Concluding Remarks

Conditional Sequence Generation

• RL (human feedback)

• GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

• Text Style Transfer

• Unsupervised Abstractive Summarization

• Unsupervised Translation



To Learn More …

https://www.youtube.com/playlist?list=PLJV_el3uVTsMd2G9ZjcpJn1YfnM9wVOBf

You can learn more from the YouTube Channel

(in Mandarin)
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