Generative Adversarial Network and its Applications to Signal Processing and Natural Language Processing

Hung-yi Lee and Yu Tsao

Outline

Part I: General Introduction of Generative Adversarial Network (GAN)

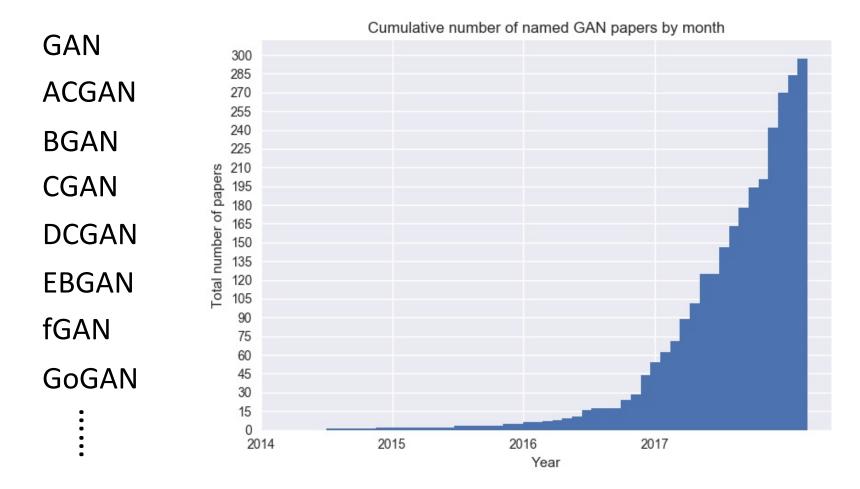
Part II: Applications on Signal Processing

Part III: Applications on Natural Language Processing Generative Adversarial Network and its Applications to Signal Processing and Natural Language Processing

Part I: General Introduction

All Kinds of GAN ...

https://github.com/hindupuravinash/the-gan-zoo



Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, "Variational Approaches for Auto-Encoding Generative Adversarial Networks", arXiv, 2017

²We use the Greek α prefix for α -GAN, as AEGAN and most other Latin prefixes seem to have been taken https://deephunt.in/the-gan-zoo-79597dc8c347.

ICASSP

Keyword search on session index page, so session name is included.

Number of papers whose titles include the keyword ■ generative ■ adversarial ■ reinforcement

Outline of Part 1

Generation by GAN

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning

Outline of Part 1

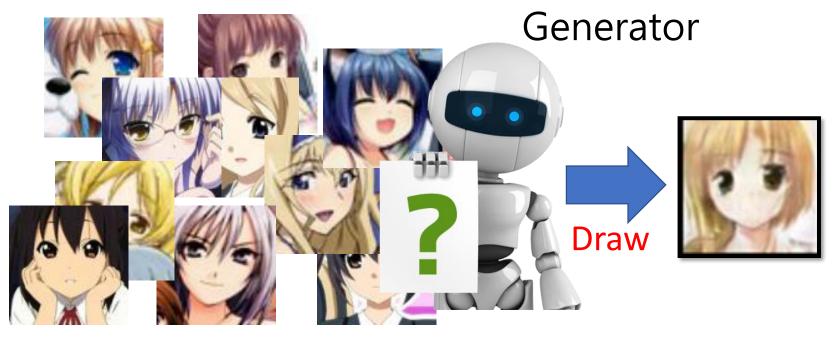
Generation by GAN

- Image Generation as Example
- Theory behind GAN
- Issues and Possible Solutions

Conditional Generation

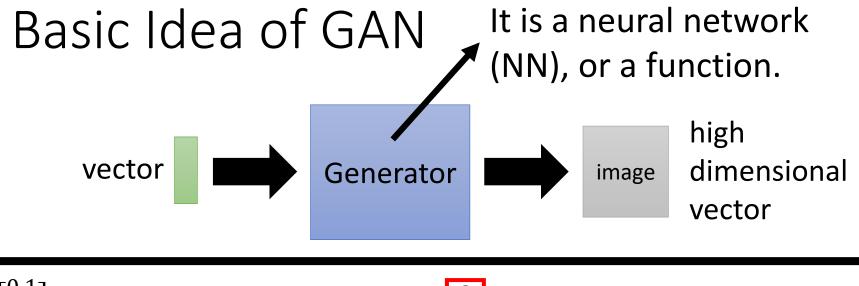
Unsupervised Conditional Generation

Relation to Reinforcement Learning

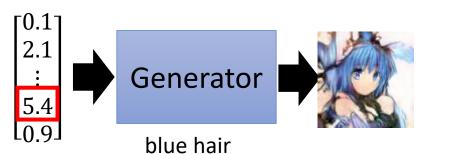


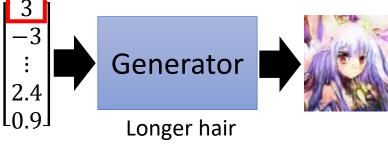
Examples

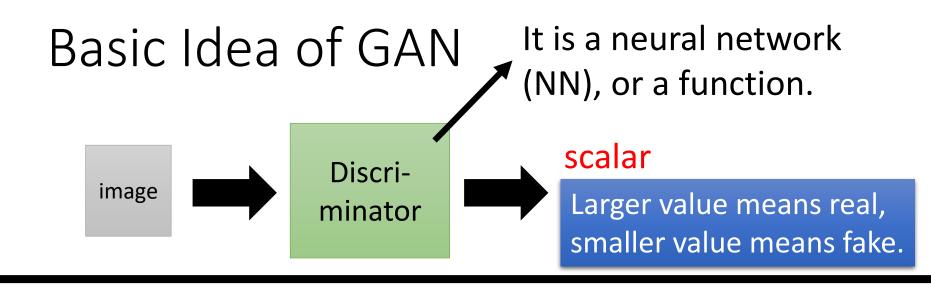
Powered by: http://mattya.github.io/chainer-DCGAN/



Each dimension of input vector represents some characteristics.



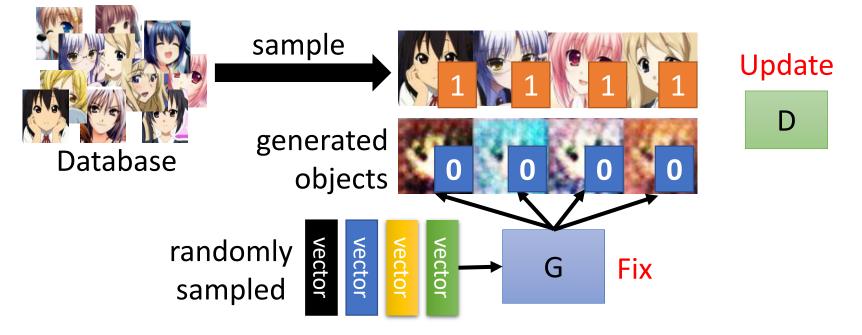




Algorithm

- Initialize generator and discriminator
- G D

- In each training iteration:
- **Step 1**: Fix generator G, and update discriminator D



Discriminator learns to assign high scores to real objects and low scores to generated objects.

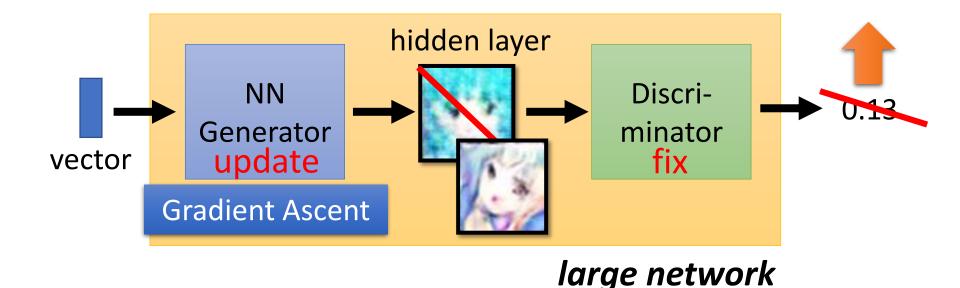
Algorithm

Initialize generator and discriminator

• In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator



Algorithm

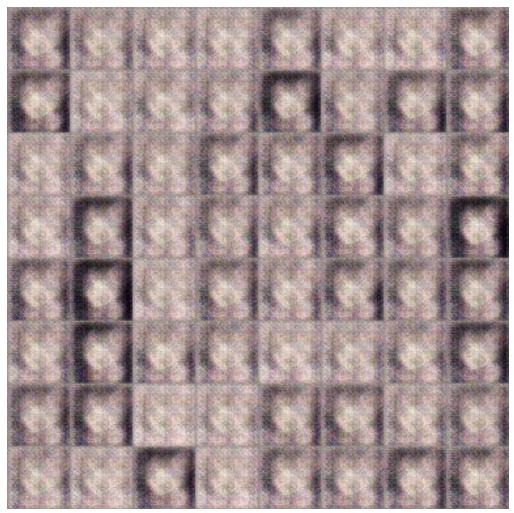
• Initialize generator and discriminator

G

D

• In each training iteration:





100 updates

Source of training data: https://zhuanlan.zhihu.com/p/24767059

1000 updates

2000 updates

5000 updates

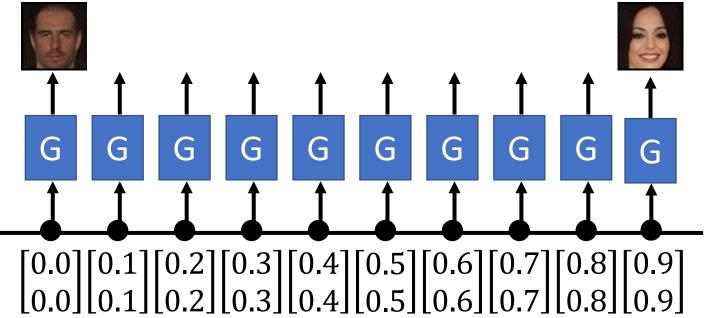
10,000 updates

20,000 updates

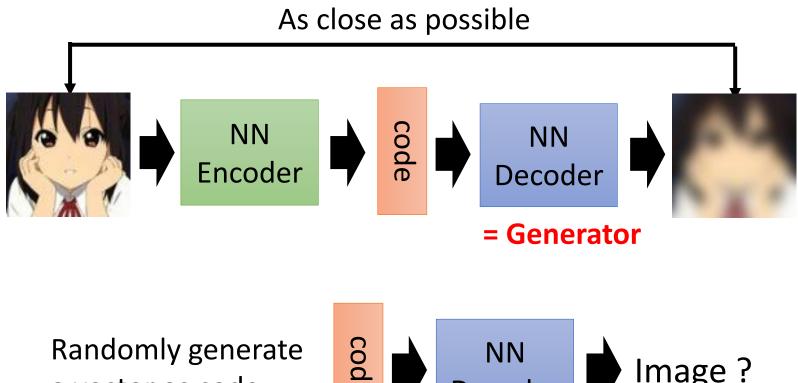
50,000 updates

The faces generated by machine.

The images are generated by Yen-Hao Chen, Po-Chun Chien, Jun-Chen Xie, Tsung-Han Wu.



(Variational) Auto-encoder



a vector as code

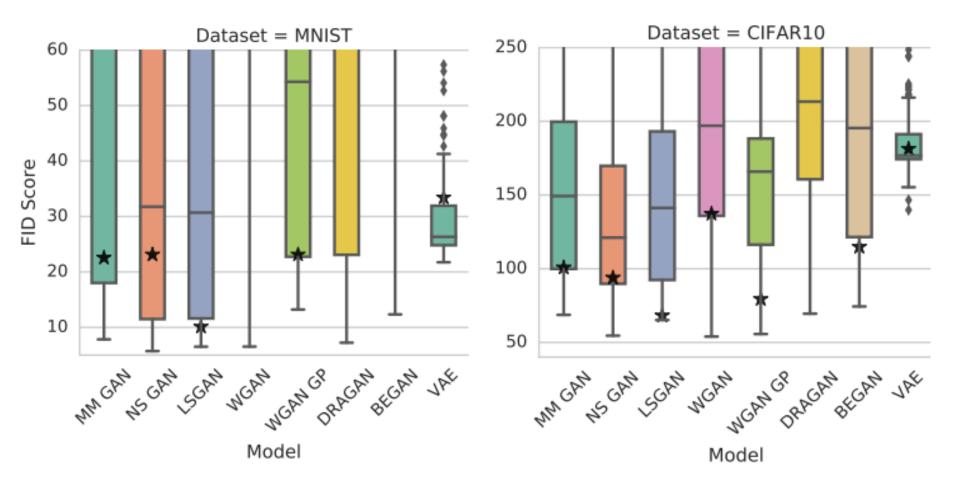
Auto-encoder v.s. GAN

Auto-encoder



If discriminator does not simply memorize the images, Generator learns the patterns of faces.

[Mario Lucic, et al. arXiv, 2017]



FID[Martin Heusel, et al., NIPS, 2017]: Smaller is better

Outline of Part 1

Generation

- Image Generation as Example
- Theory behind GAN
- Issues and Possible Solutions

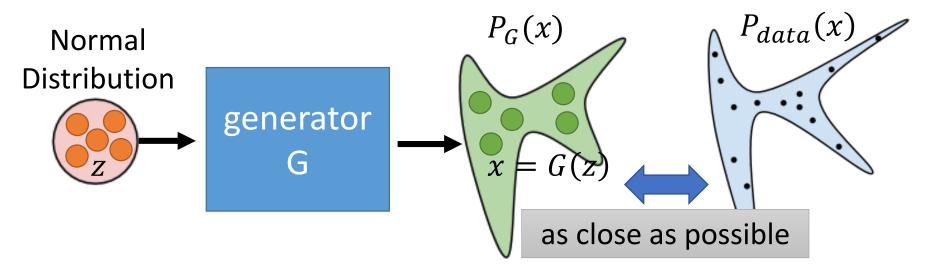
Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning

x: an image (a highdimensional vector)

• A generator G is a network. The network defines a probability distribution P_G



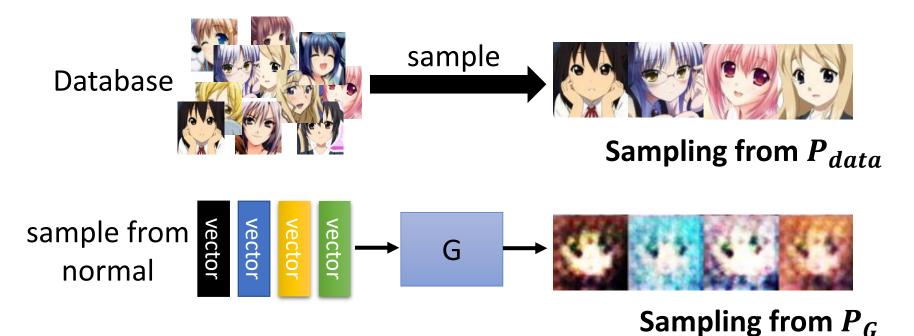
$$G^* = arg \min_{G} \underline{Div(P_G, P_{data})}$$

Divergence between distributions P_G and P_{data}
How to compute the divergence?

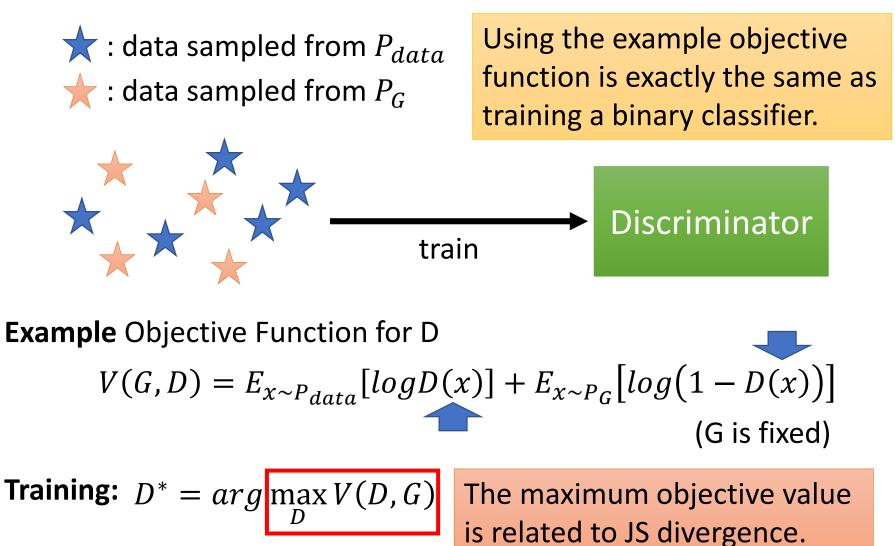
Discriminator

$$G^* = \arg\min_{G} Div(P_G, P_{data})$$

Although we do not know the distributions of P_G and P_{data} , we can sample from them.

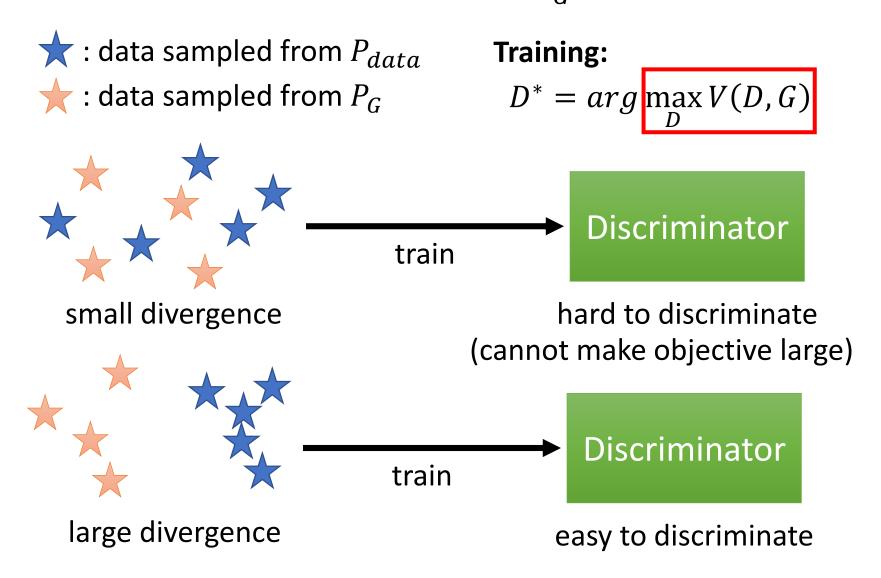


Discriminator $G^* = \arg\min_{G} Div(P_G, P_{data})$



[Goodfellow, et al., NIPS, 2014]

Discriminator $G^* = \arg \min_{G} Div(P_G, P_{data})$



[Goodfellow, et al., NIPS, 2014]

$$G^* = \arg \min_{G} \max_{D} V(G, D)$$

$$D^* = \arg \max_{D} V(D, G)$$
The maximum objective value is related to the divergence.

• Initialize generator and discriminator

• In each training iteration:
$$\underline{Step 1}$$
: Fix generator G, and update discriminator D
$$\underline{Step 2}$$
: Fix discriminator D, and update generator G

Can we use other divergence?

Name	$D_f(P \ Q)$	Generator $f(u)$
Total variation	$\frac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$ $\int p(x)\pi \log \frac{p(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x)+(1-\pi)q(x)} dx$ $\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4)$	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{1}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} \mathrm{d}x - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the divergence you like ⁽²⁾

[Sebastian Nowozin, et al., NIPS, 2016]

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$-1 - \log(-t)$
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$2 - 2\sqrt{1-t}$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$\frac{W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2}{-\log(2 - \exp(t))}$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log \frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$

Outline of Part 1

https://github.com/soumith/ganhacks

Generation

- Image Generation as Example
- Theory behind GAN

Issues and Possible Solutions

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning

JS divergence is not suitable

- In most cases, P_G and P_{data} are not overlapped.
- 1. The nature of data

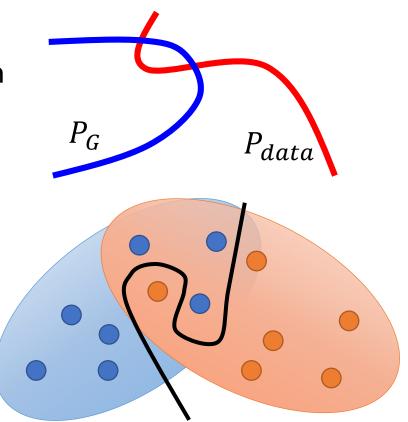
Both P_{data} and P_G are low-dim manifold in high-dim space.

The overlap can be ignored.

• 2. Sampling

Even though P_{data} and P_{G} have overlap.

If you do not have enough sampling



What is the problem of JS divergence?

$$P_{G_{0}} \xrightarrow{P_{data}} P_{data} P_{G_{1}} \xrightarrow{P_{data}} P_{data} \cdots P_{G_{100}} P_{data}$$

$$F_{G_{100}} \xrightarrow{P_{data}} P_{data} \xrightarrow{IS(P_{G_{0}}, P_{data})} JS(P_{G_{1}}, P_{data}) \cdots JS(P_{G_{100}}, P_{data})$$

$$= log2 = log2 = 0$$

JS divergence is log2 if two distributions do not overlap.

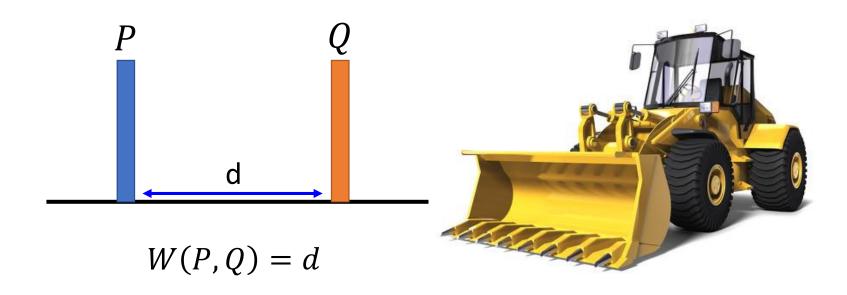
Intuition: If two distributions do not overlap, binary classifier achieves 100% accuracy

Same objective value is obtained.

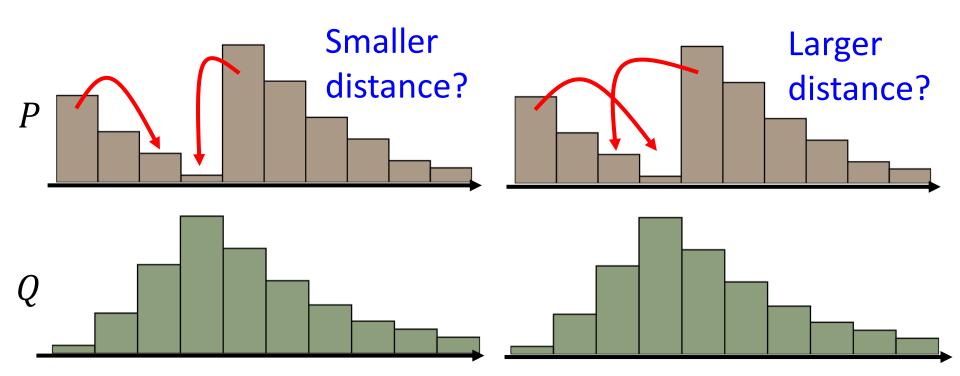
Same divergence

Wasserstein distance

- Considering one distribution P as a pile of earth, and another distribution Q as the target
- The average distance the earth mover has to move the earth.



Wasserstein distance

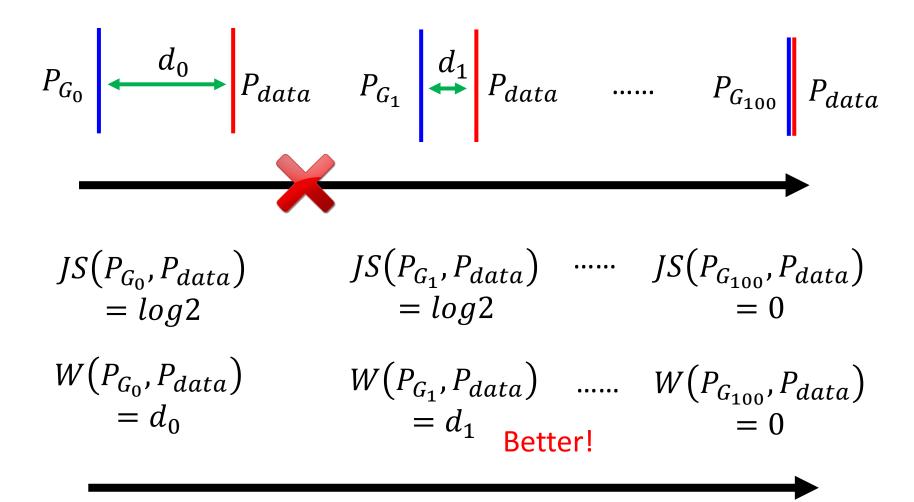


There are many possible "moving plans".

Using the "moving plan" with the smallest average distance to define the Wasserstein distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

What is the problem of JS divergence?



[Martin Arjovsky, et al., arXiv, 2017]

WGAN

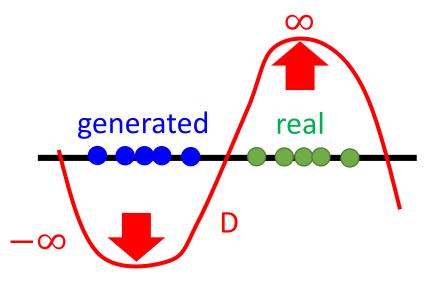
Evaluate wasserstein distance between P_{data} and P_{G}

$$V(G,D) = \max_{D \in \underline{1-Lipschitz}} \{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[D(x)] \}$$

D has to be smooth enough. How to fulfill this constraint?

Without the constraint, the training of D will not converge.

Keeping the D smooth forces D(x) become ∞ and $-\infty$



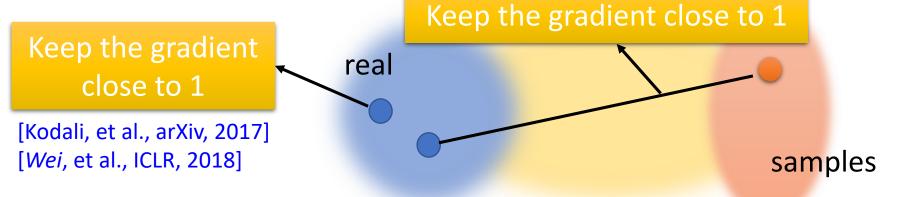
$$V(G,D) = \max_{D \in 1-Lipschitz} \left\{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[D(x)] \right\}$$

• Original WGAN → Weight Clipping [Martin Arjovsky, et al., arXiv, 2017]

Force the parameters w between c and -c

After parameter update, if w > c, w = c; if w < -c, w = -c

• Improved WGAN \rightarrow Gradient Penalty [Ishaan Gulrajani, NIPS, 2017]

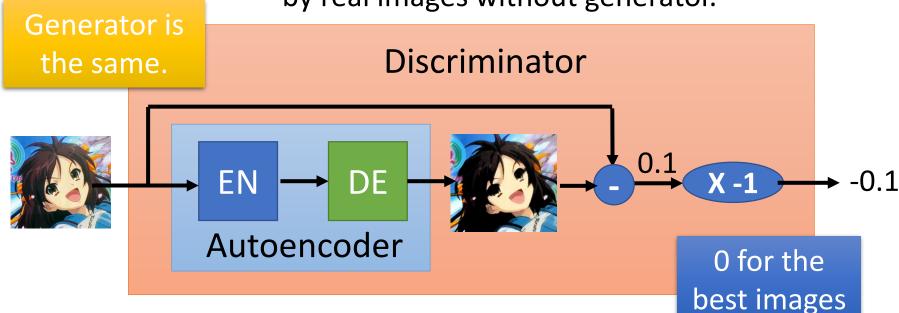


 Spectral Normalization → Keep gradient norm smaller than 1 everywhere [Miyato, et al., ICLR, 2018]

[Junbo Zhao, et al., arXiv, 2016]

Energy-based GAN (EBGAN)

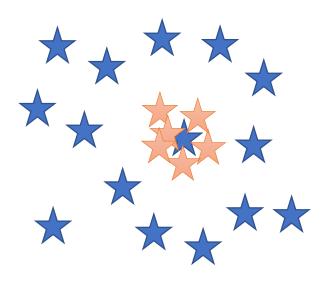
- Using an autoencoder as discriminator D
 - Using the negative reconstruction error of auto-encoder to determine the goodness
 - Benefit: The auto-encoder can be pre-train by real images without generator.



Mode Collapse

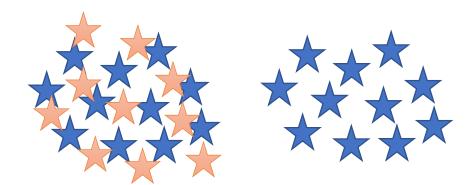
★ : real data

★ : generated data



Training with too many iterations

Missing Mode?



Generator switches mode during training

Generator at iteration t

Generator at iteration t+1

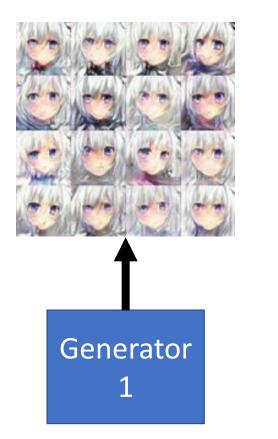
Generator at iteration t+2

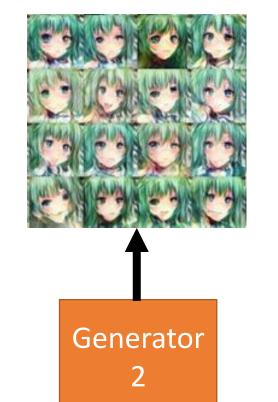
BEGAN on CelebA

Ensemble

Train a set of generators: $\{G_1, G_2, \dots, G_N\}$ To generate an image Random pick a generator G_i

Use G_i to generate the image



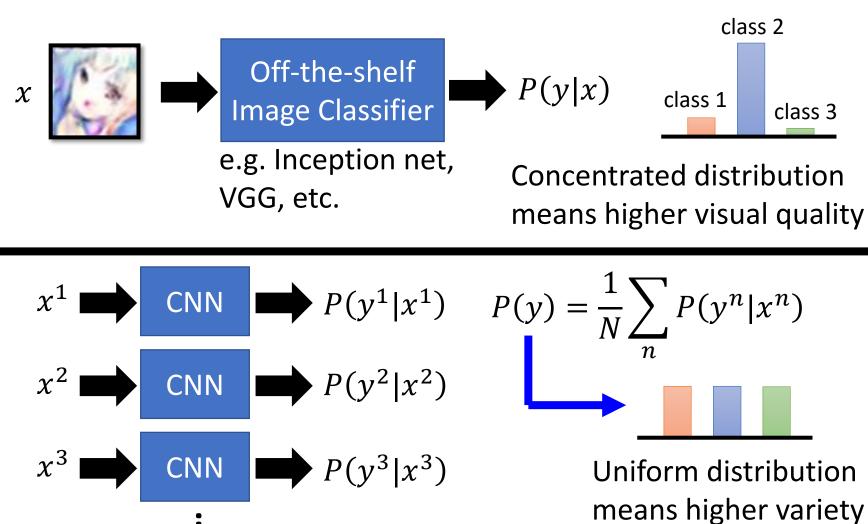


.....

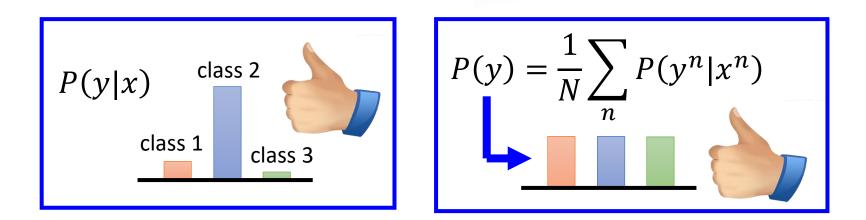
.....

Objective Evaluation

x: imagey: class (output of CNN)



Objective Evaluation



Inception Score

$$= \sum_{x} \sum_{y} \frac{P(y|x) log P(y|x)}{\int_{y} P(y) log P(y)}$$
 Negative entropy of P(y|x)
$$- \sum_{y} \frac{P(y) log P(y)}{\int_{y} P(y) log P(y)}$$
 Entropy of P(y)

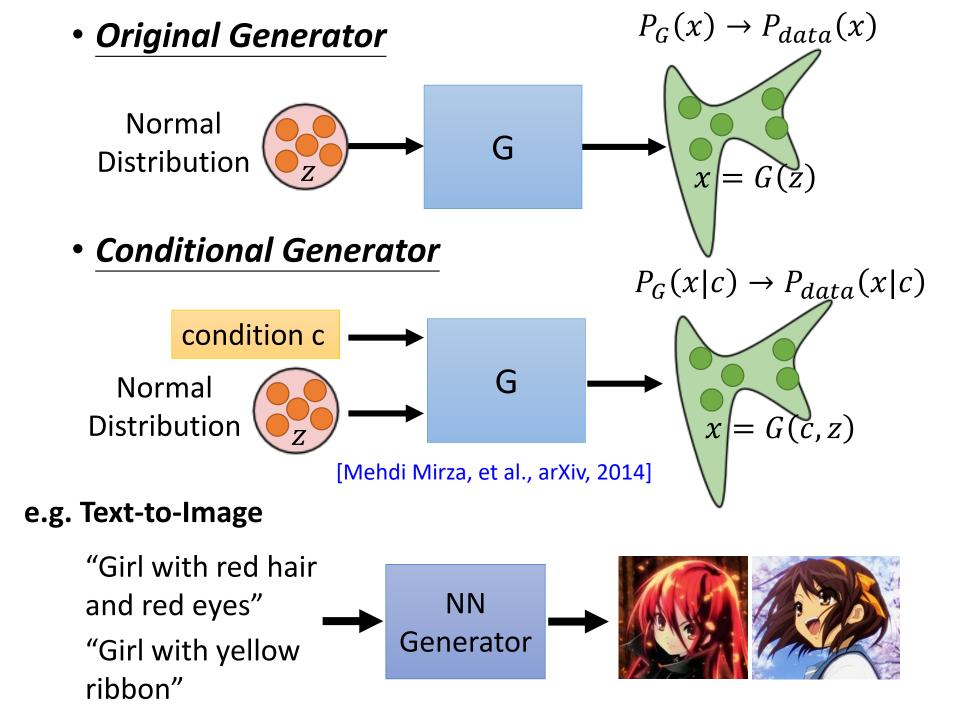
Outline of Part 1

Generation

Conditional Generation

Unsupervised Conditional Generation

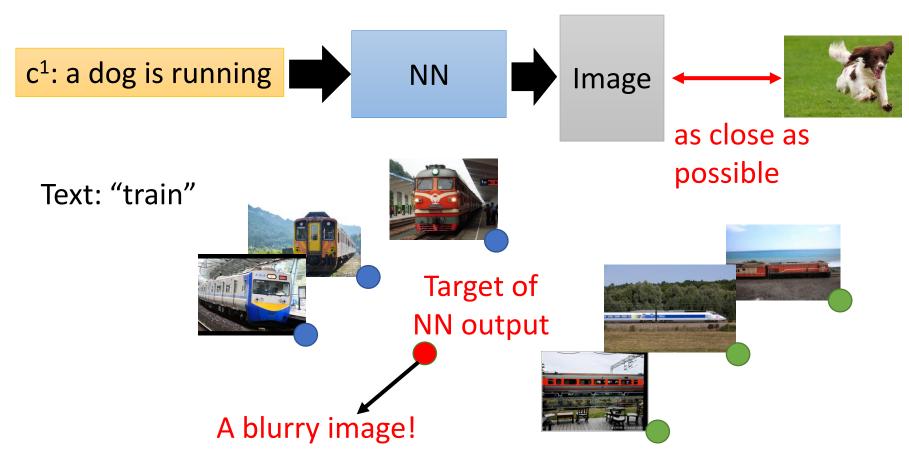
Relation to Reinforcement Learning



Text-to-Image

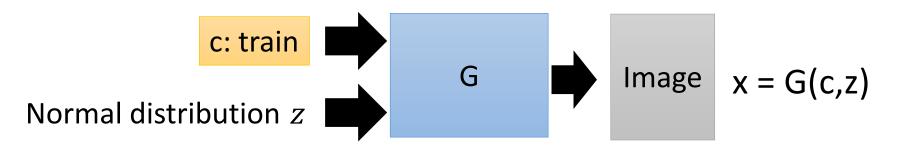
a bird is flying

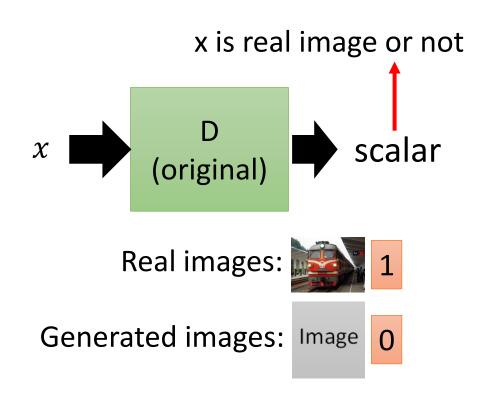
Traditional supervised approach



[Scott Reed, et al, ICML, 2016]

Conditional GAN

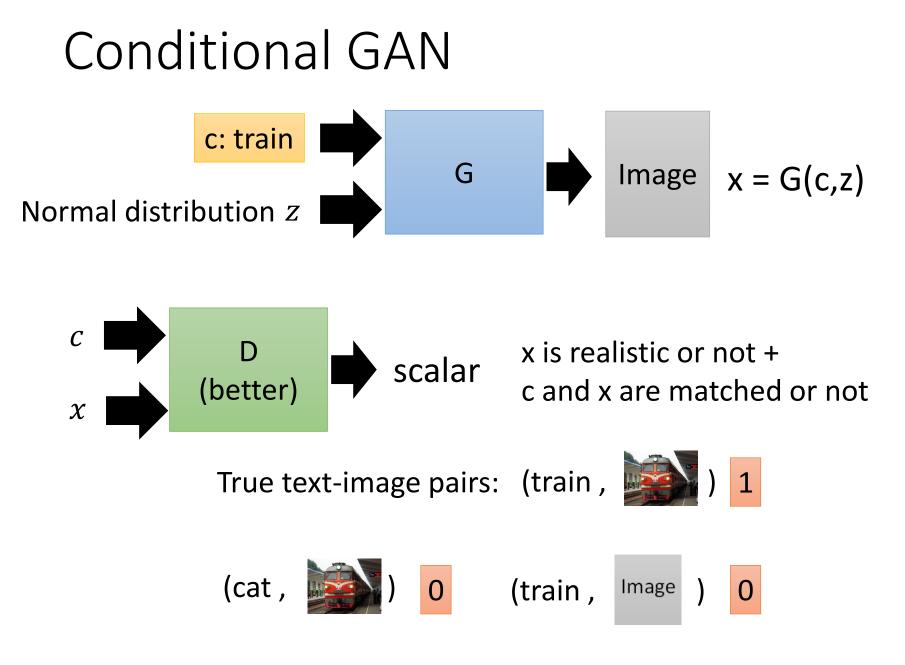




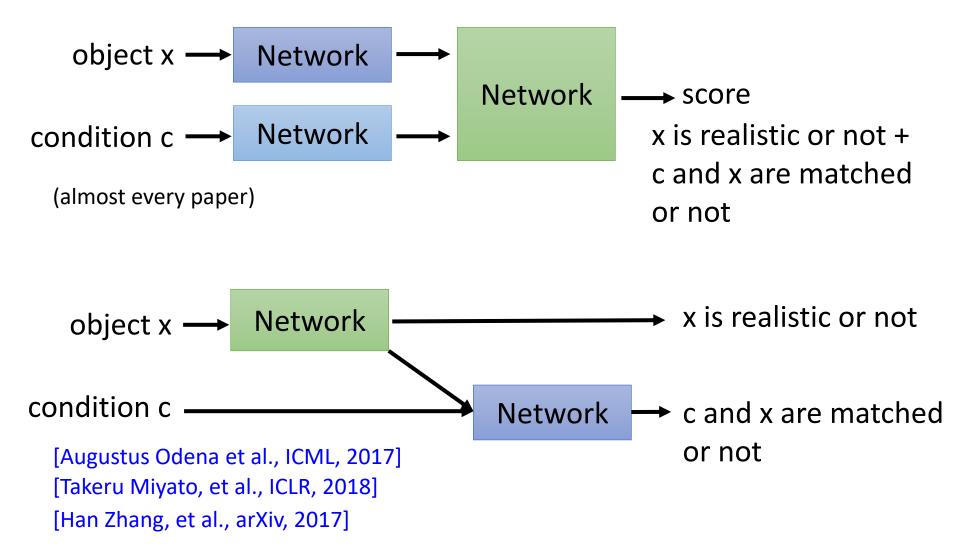
Generator will learn to generate realistic images

But completely ignore the input conditions.

[Scott Reed, et al, ICML, 2016]



Conditional GAN - Discriminator



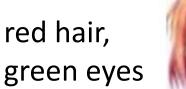
Conditional GAN

The images are generated by Yen-Hao Chen, Po-Chun Chien, Jun-Chen Xie, Tsung-Han Wu.

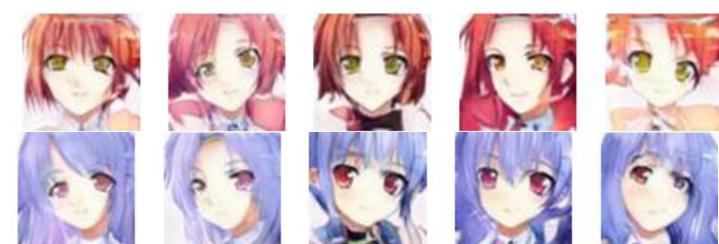
paired data

blue eyes red hair short hair

Collecting anime faces and the description of its characteristics



blue hair, red eyes



[Phillip Isola, et al., CVPR, 2017]

Conditional GAN - Image-to-image

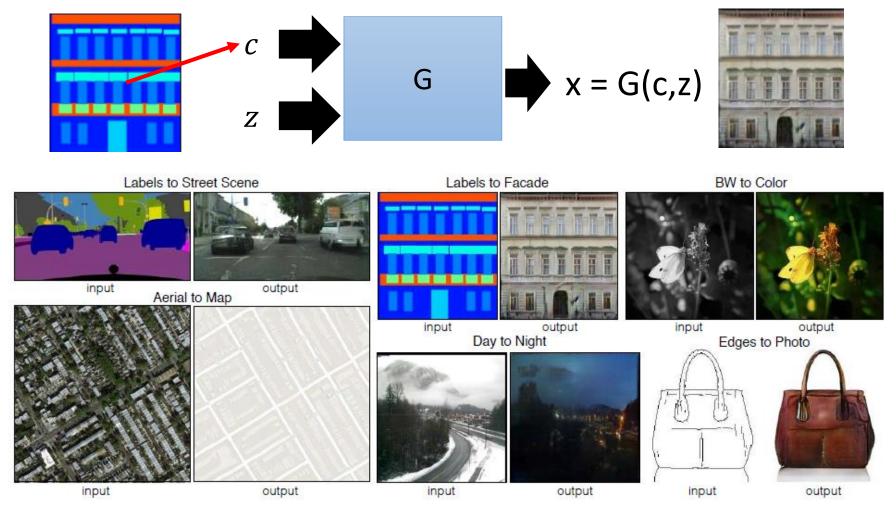
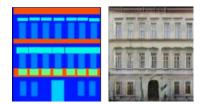


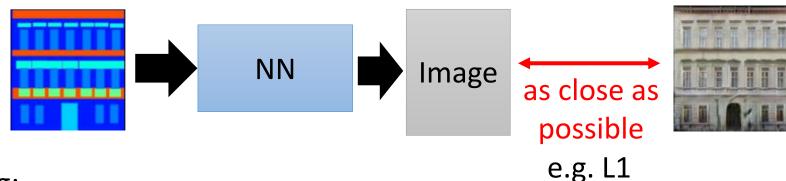
Image translation, or pix2pix

[Phillip Isola, et al., CVPR, 2017]

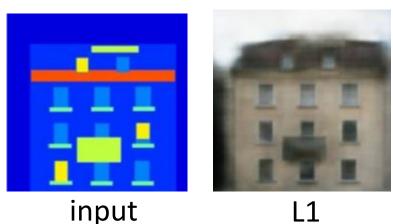
Conditional GAN - Image-to-image

Traditional supervised approach





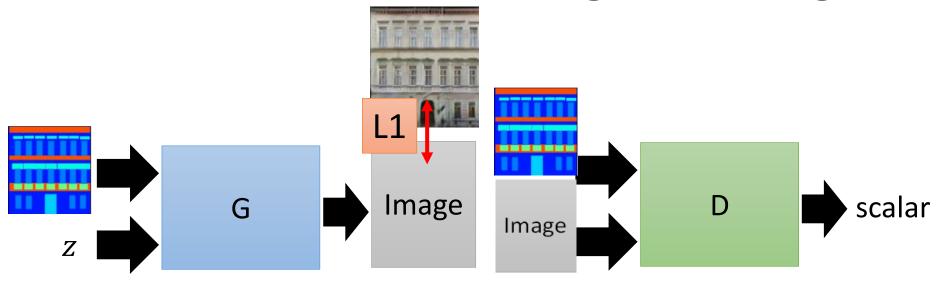
Testing:



It is blurry.

[Phillip Isola, et al., CVPR, 2017]

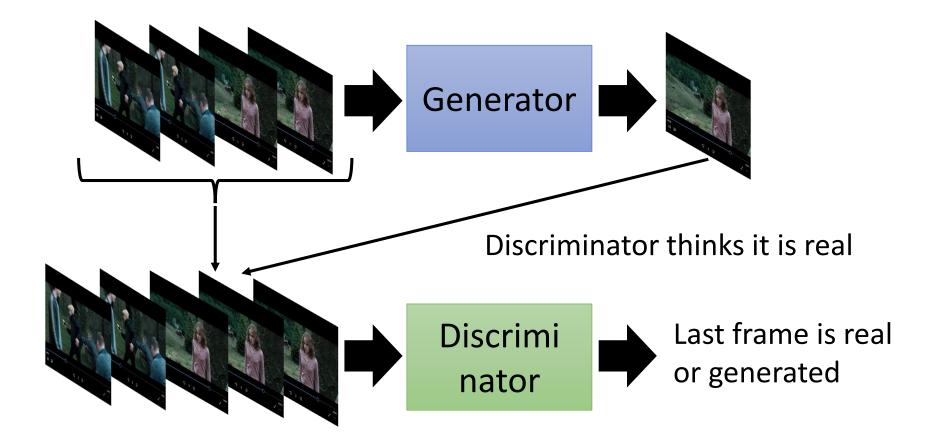
Conditional GAN - Image-to-image

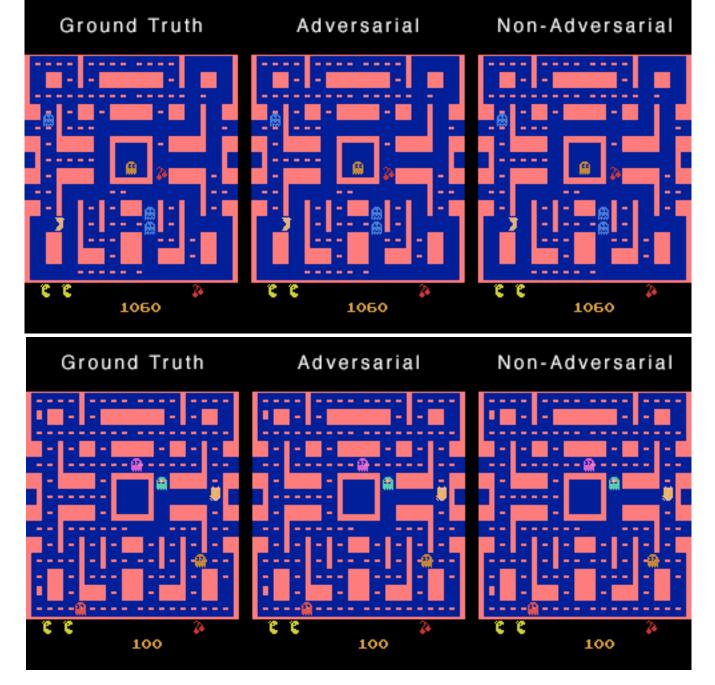


Testing:

[Michael Mathieu, et al., arXiv, 2015] ΔN

Conditional GAN - Video Generation

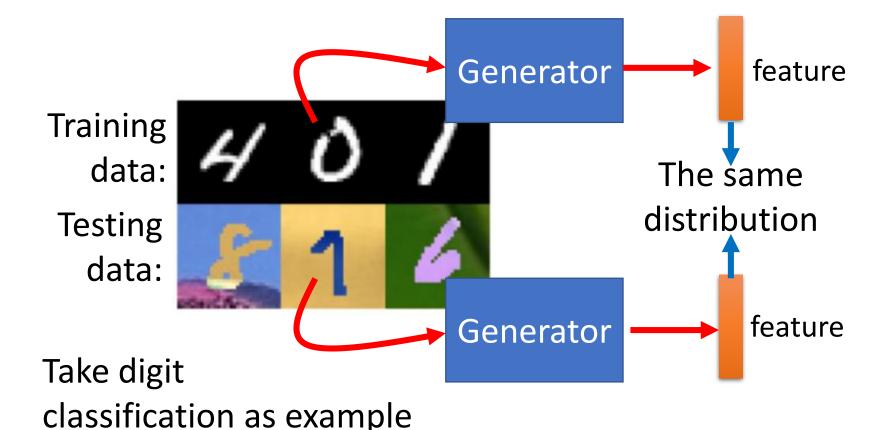




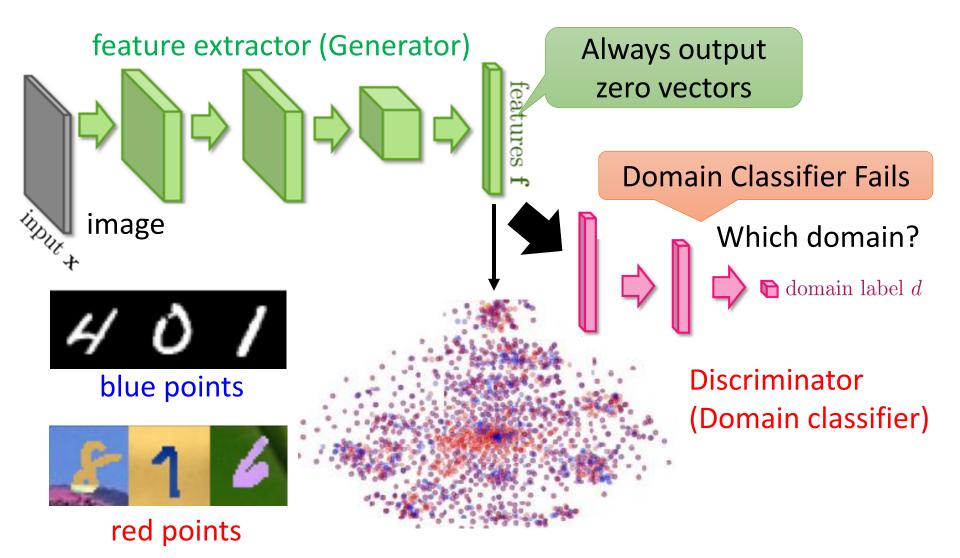
https://github.com/dyelax/Adversarial_Video_Generation

Domain Adversarial Training

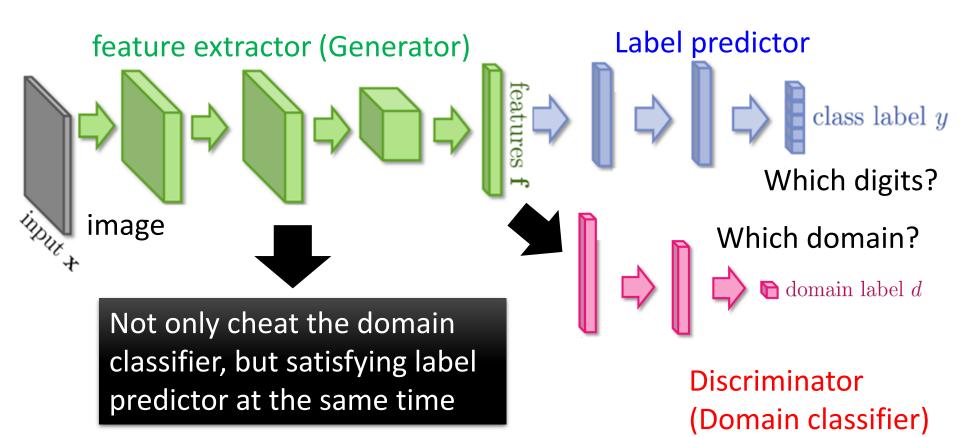
• Training and testing data are in different domains



Domain Adversarial Training



Domain Adversarial Training



Successfully applied on image classification [Ganin et al, ICML, 2015][Ajakan et al. JMLR, 2016]

More speech-related applications in Part II.

Outline of Part 1

Generation

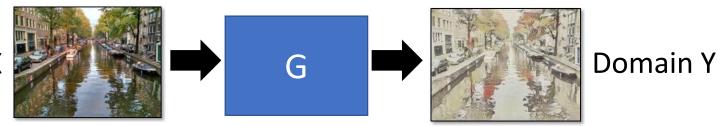
Conditional Generation

Unsupervised Conditional Generation

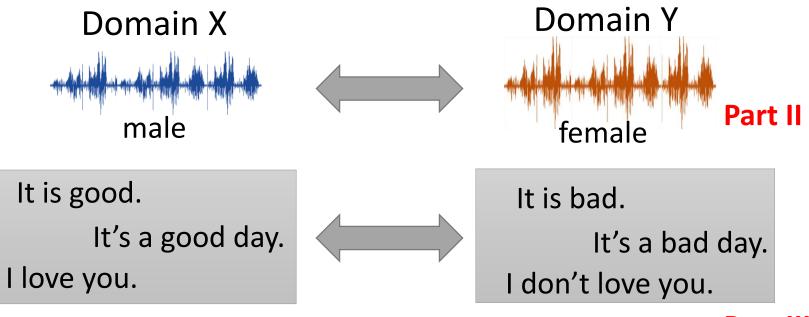
Relation to Reinforcement Learning

Unsupervised Conditional Generation

Domain X



Transform an object from one domain to another *without paired data* (e.g. style transfer)



Part III

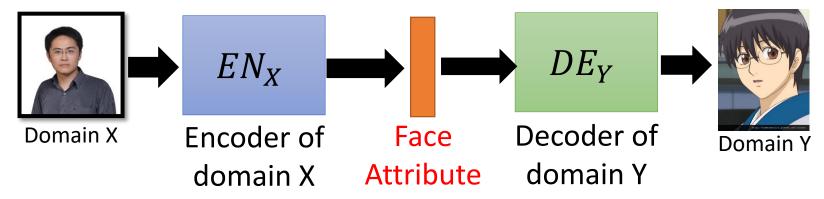
Unsupervised Conditional Generation

Approach 1: Direct Transformation



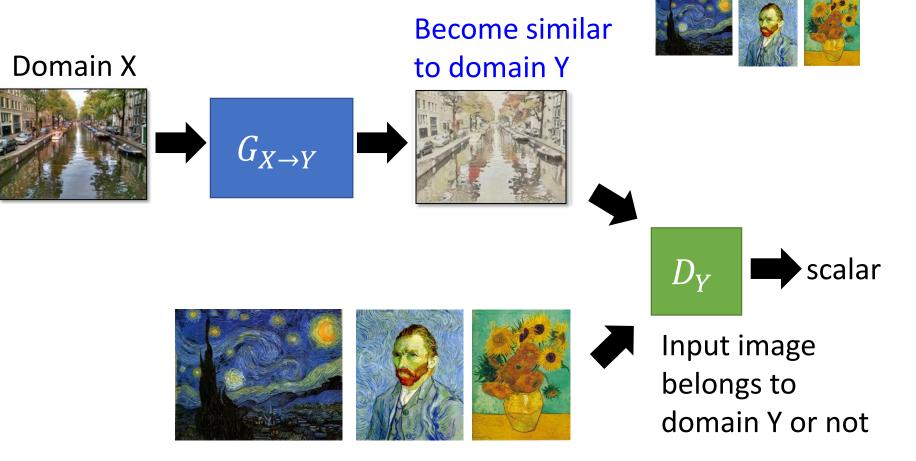
For texture or color change

Approach 2: Projection to Common Space



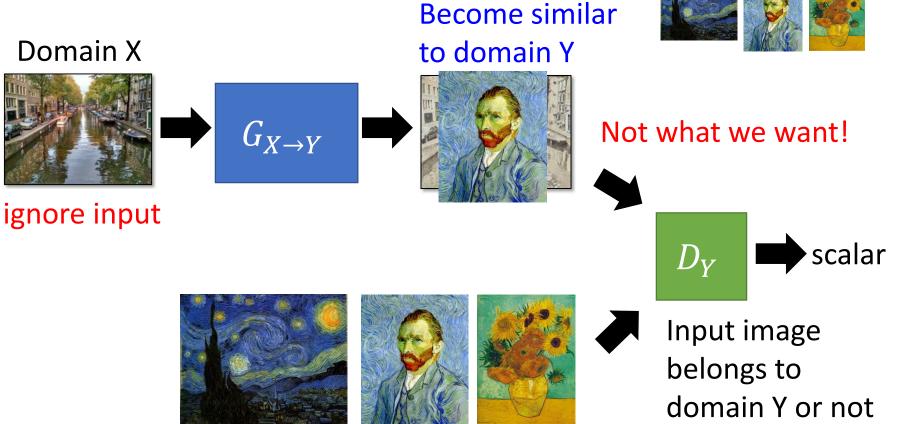
Larger change, only keep the semantics

Domain Y



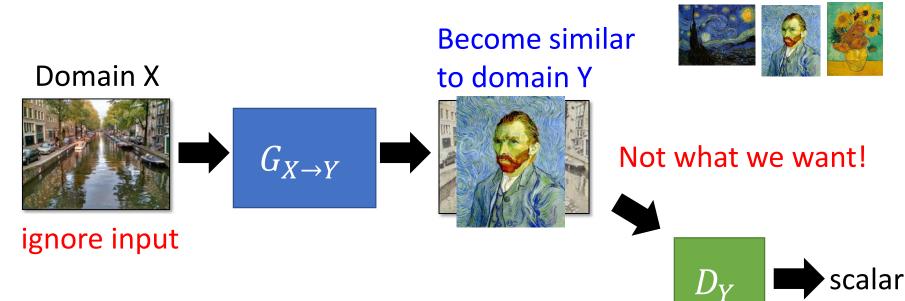
Domain Y

Domain Y



Domain Y

Domain Y



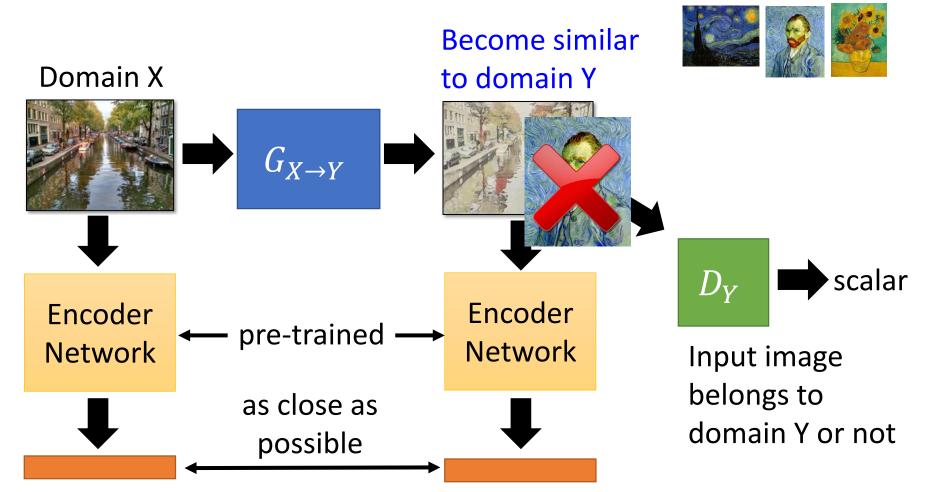
The issue can be avoided by network design.

Simpler generator makes the input and output more closely related.

Input image belongs to domain Y or not

[Tomer Galanti, et al. ICLR, 2018]

Domain Y

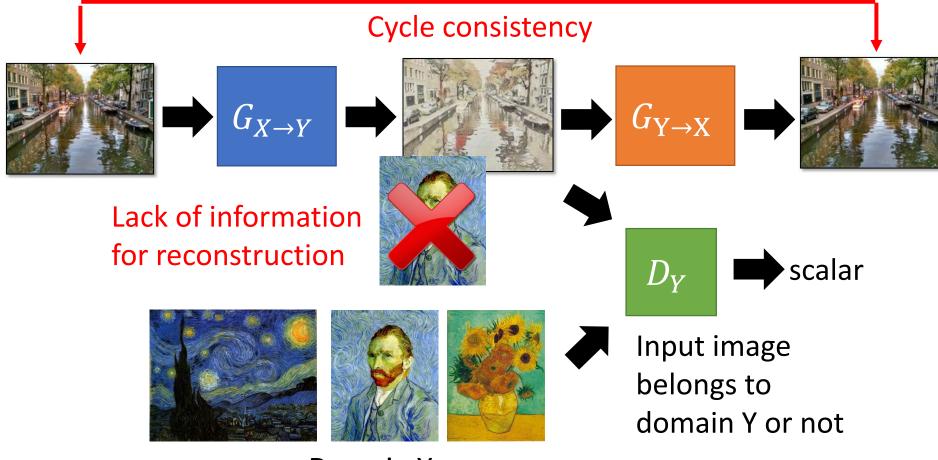


Baseline of DTN [Yaniv Taigman, et al., ICLR, 2017]

[Jun-Yan Zhu, et al., ICCV, 2017]

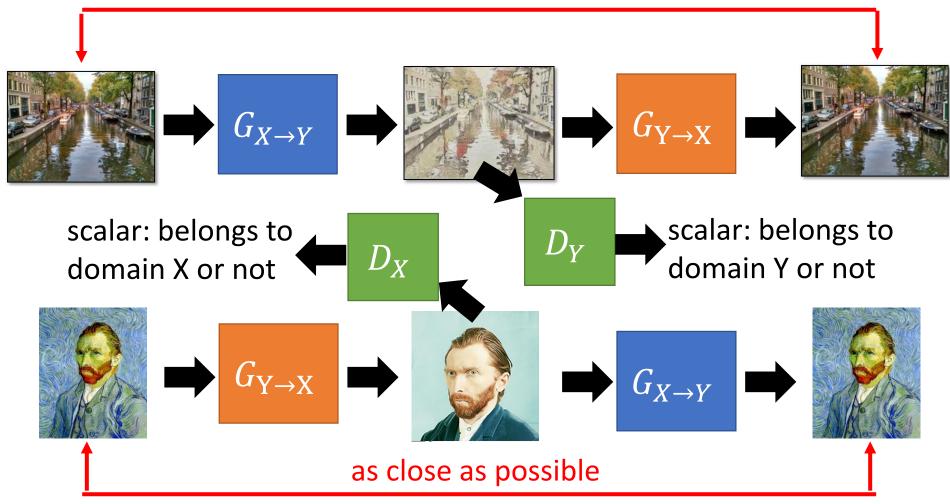
Direct Transformation

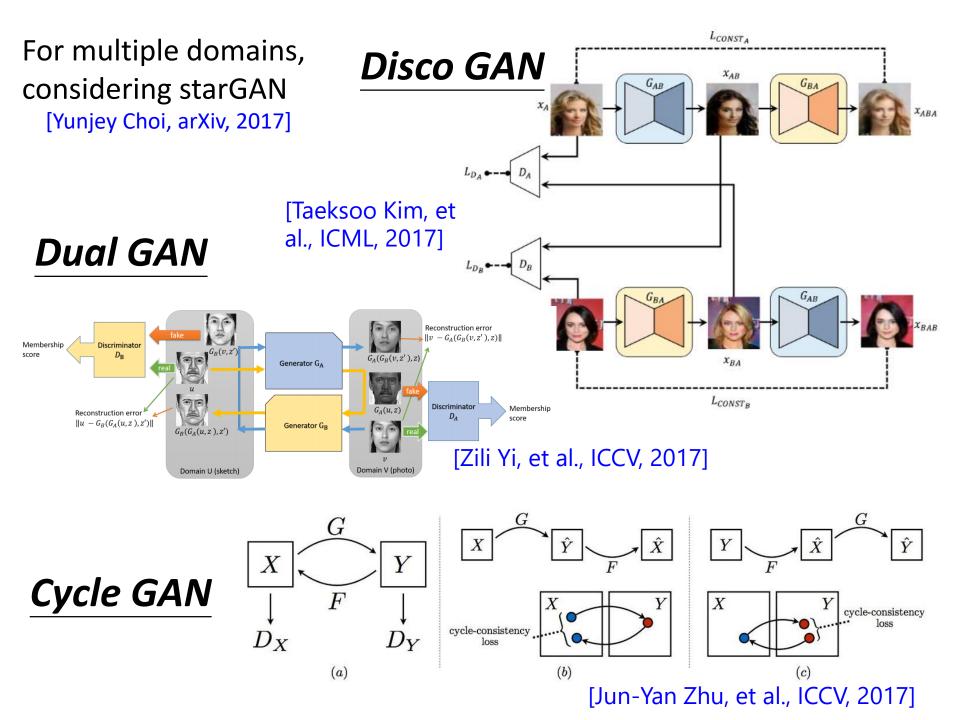
as close as possible



Domain Y

as close as possible

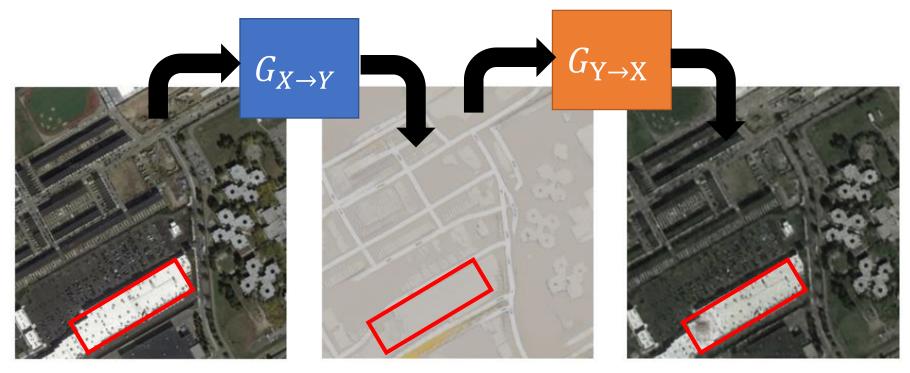




Issue of Cycle Consistency

CycleGAN: a Master of Steganography

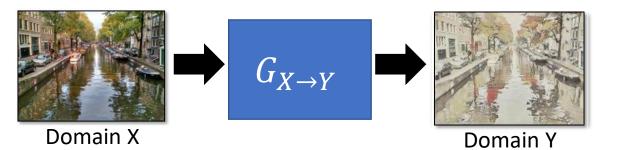
[Casey Chu, et al., NIPS workshop, 2017]



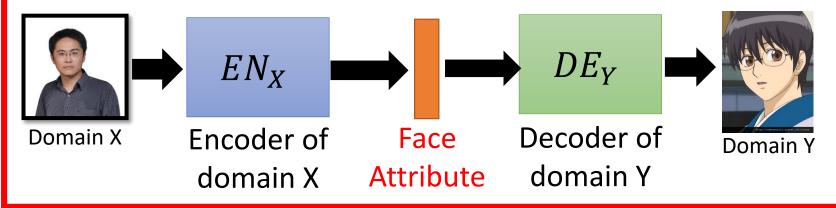
The information is hidden.

Unsupervised Conditional Generation

Approach 1: Direct Transformation

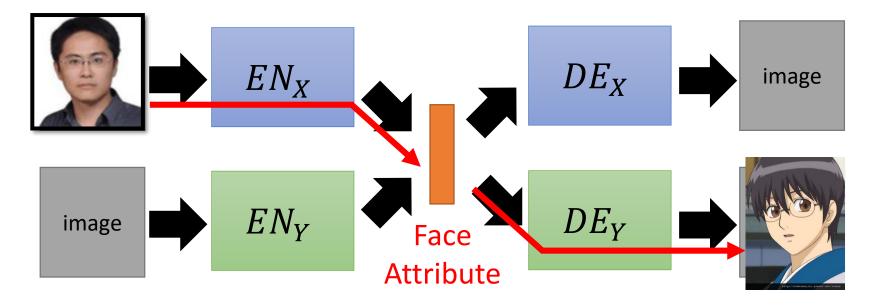


- For texture or color change
- Approach 2: Projection to Common Space



Larger change, only keep the semantics

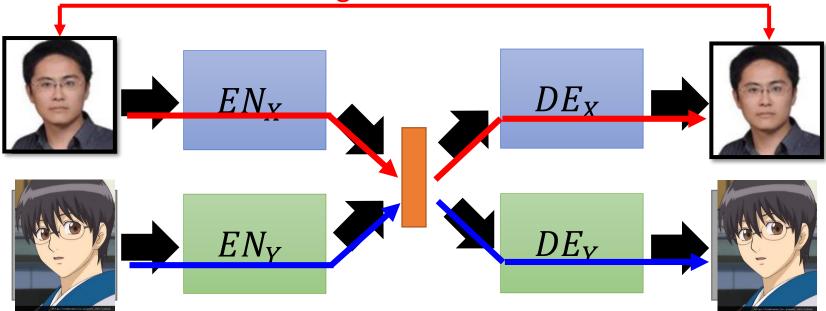
Target



Domain X

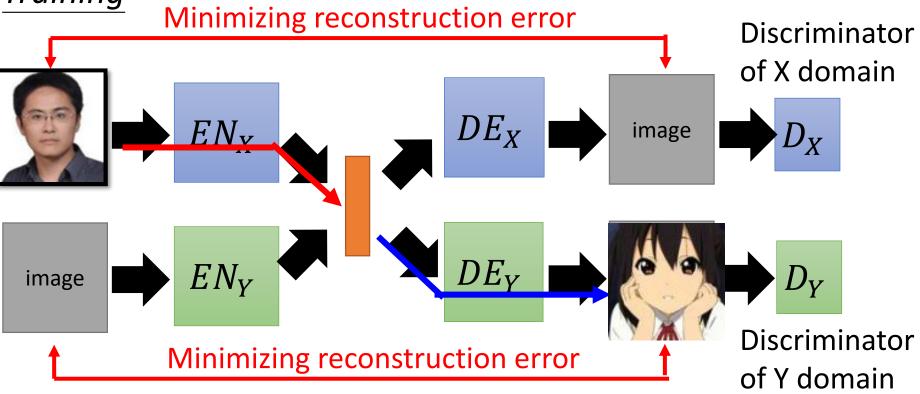
Training

Minimizing reconstruction error



Domain X

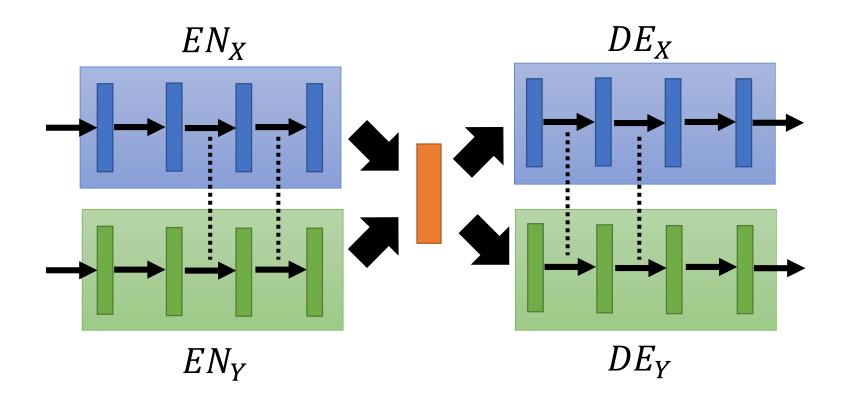
Training



Because we train two auto-encoders separately ...

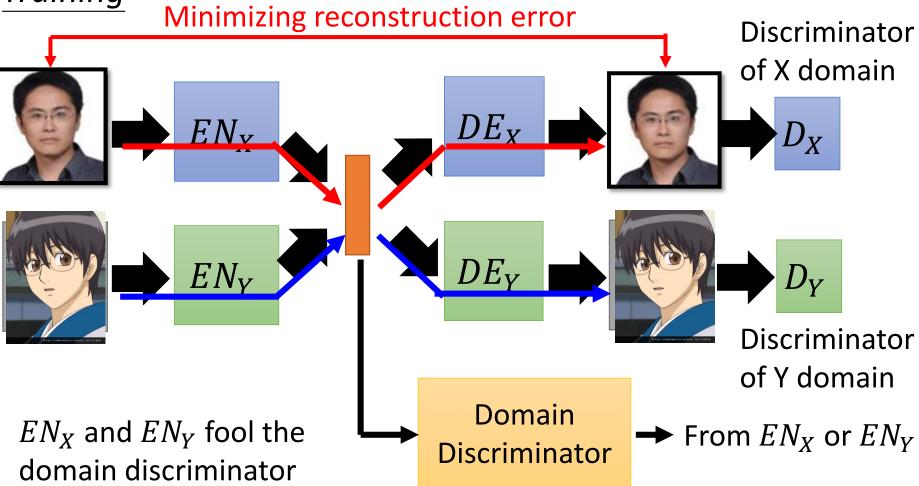
The images with the same attribute may not project to the same position in the latent space.

Training



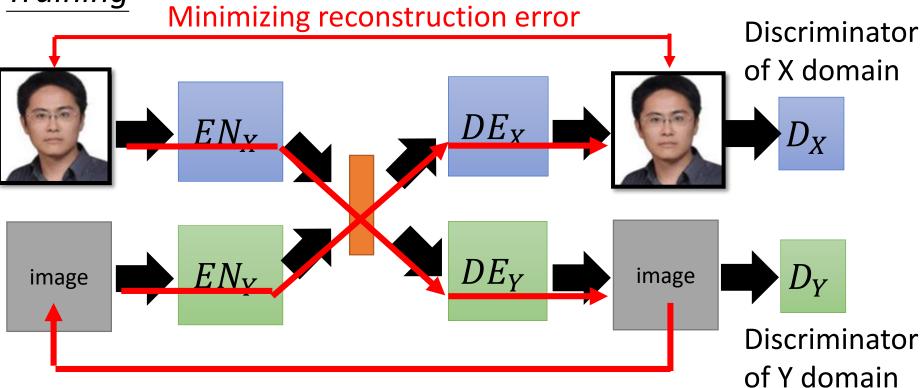
Sharing the parameters of encoders and decoders Couple GAN[Ming-Yu Liu, et al., NIPS, 2016] UNIT[Ming-Yu Liu, et al., NIPS, 2017]

Training



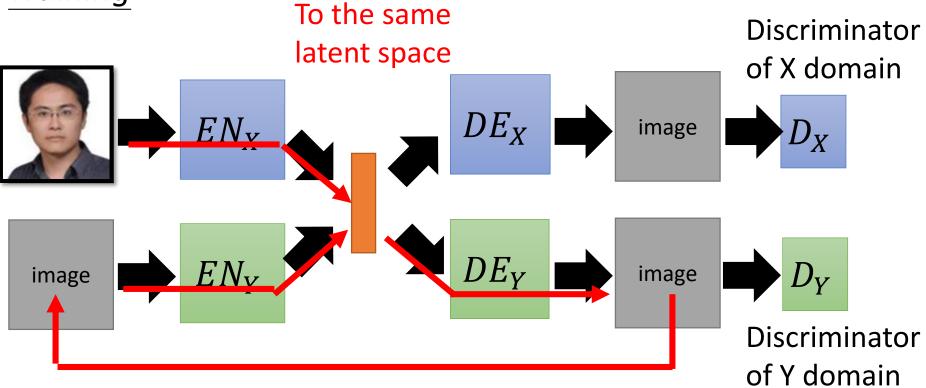
The domain discriminator forces the output of EN_X and EN_Y have the same distribution. [Guillaume Lample, et al., NIPS, 2017]

Training



Cycle Consistency:

Used in ComboGAN [Asha Anoosheh, et al., arXiv, 017]



Semantic Consistency:

Used in DTN [Yaniv Taigman, et al., ICLR, 2017] and XGAN [Amélie Royer, et al., arXiv, 2017]

Outline of Part 1

Generation

Conditional Generation

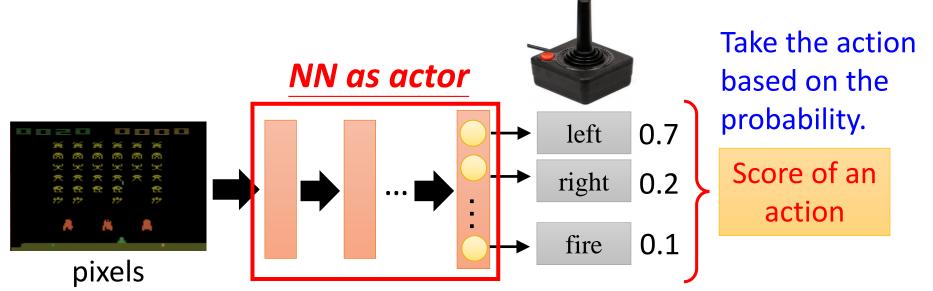
Unsupervised Conditional Generation

Relation to Reinforcement Learning

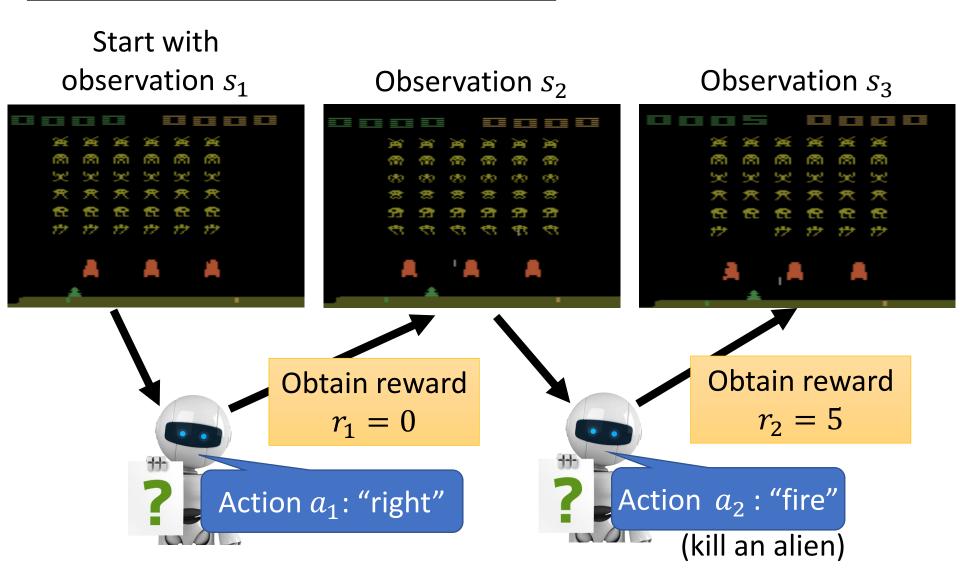
Basic Components

Neural network as Actor

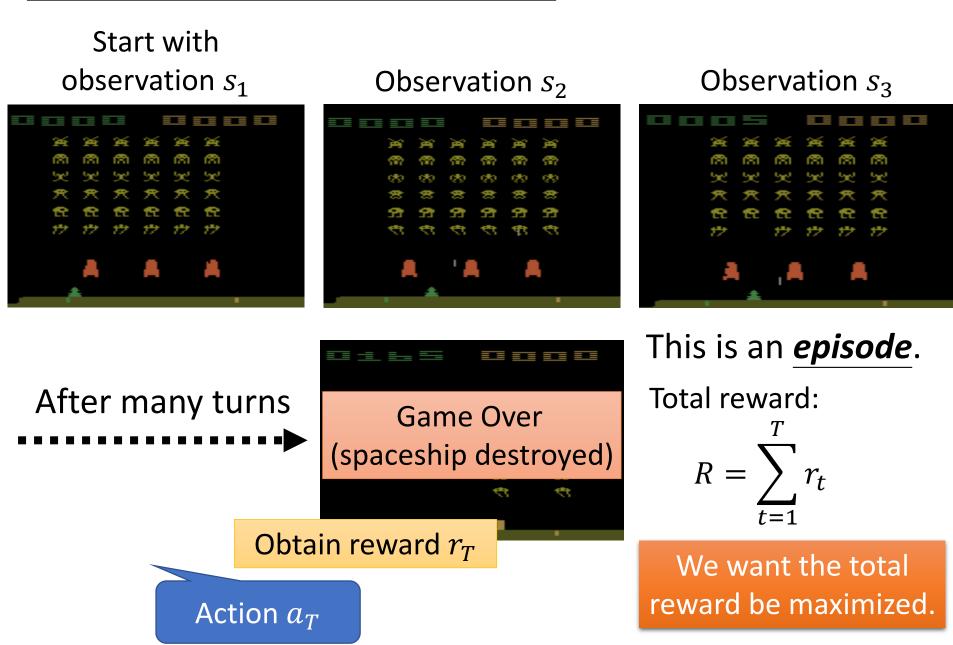
- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer



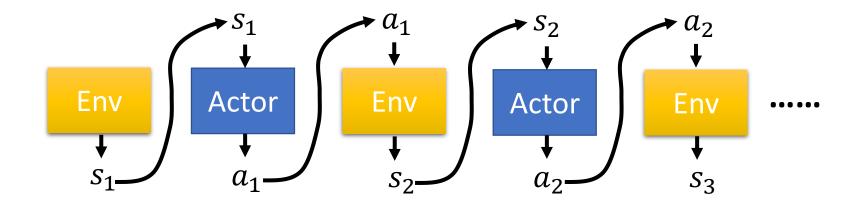
Example: Playing Video Game



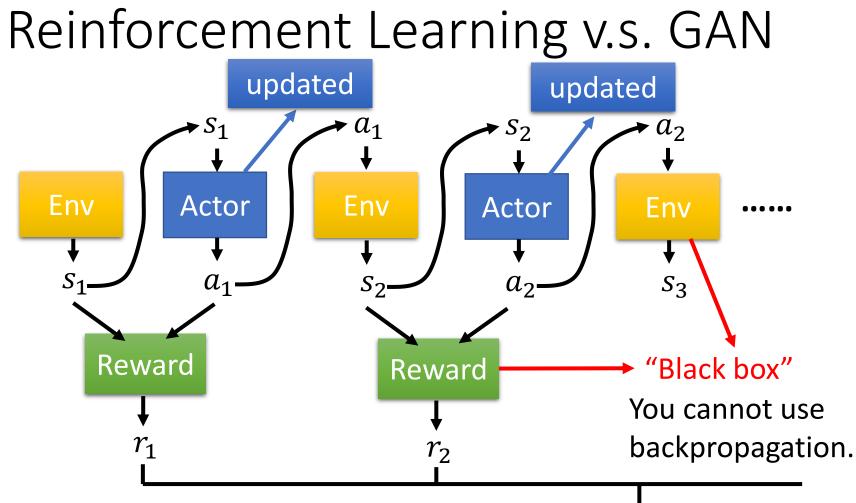
Example: Playing Video Game



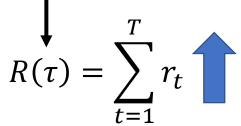
Actor, Environment, Reward



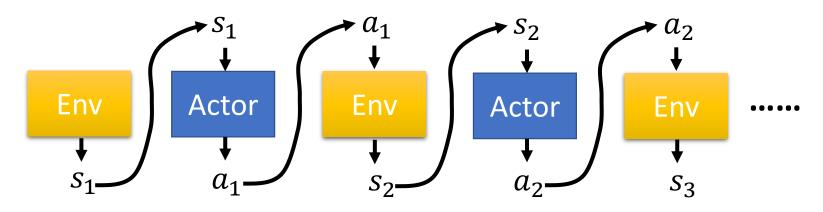
Trajectory $\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$



Actor \rightarrow GeneratorFixedReward Function \rightarrow Discriminator



Imitation Learning



reward function is not available

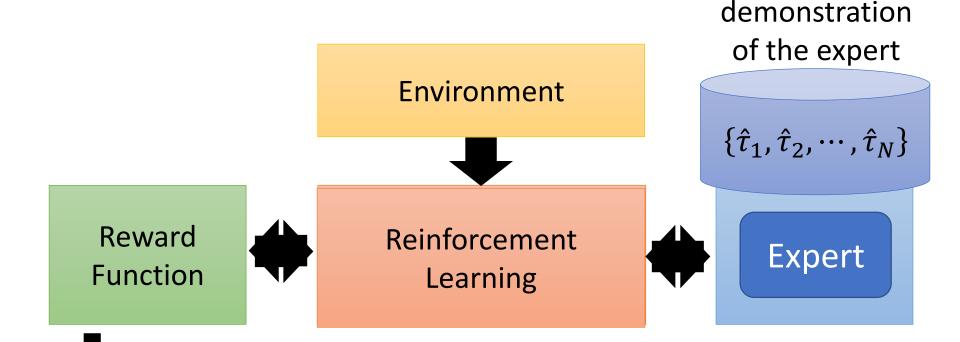
Self driving: record human drivers

Robot: grab the arm of robot

$$\{\hat{\tau}_1, \hat{\tau}_2, \cdots, \hat{\tau}_N\}$$

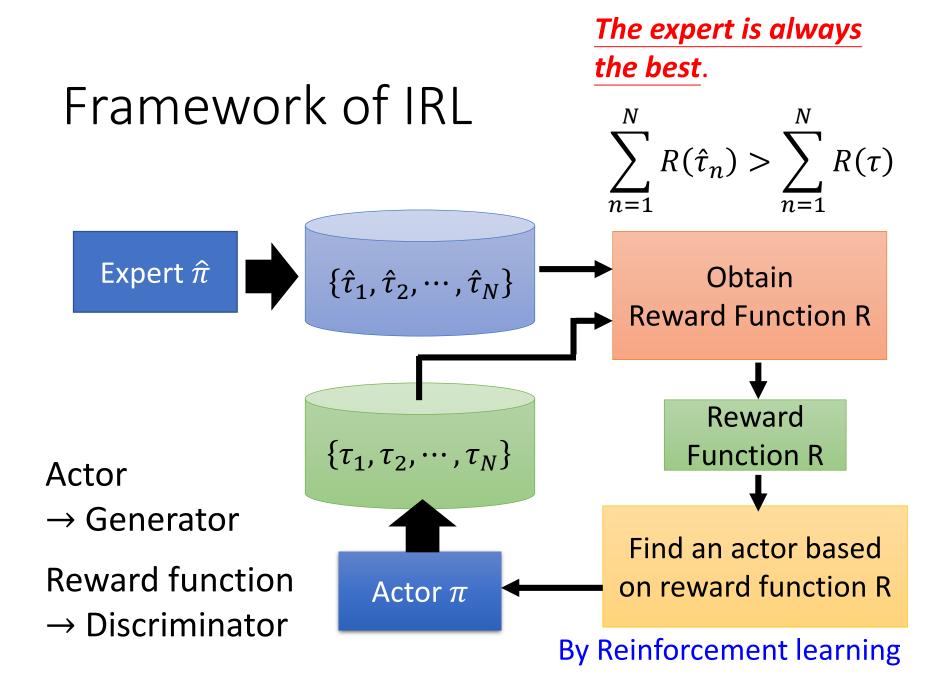
Each $\hat{\tau}$ is a trajectory of the expert.

Inverse Reinforcement Learning

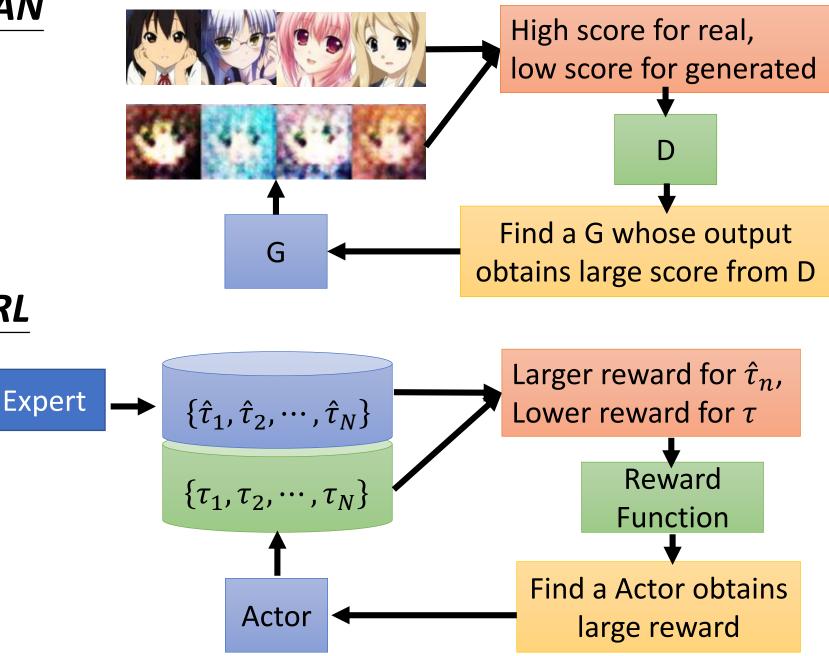


> Using the reward function to find the *optimal actor*.

Modeling reward can be easier. Simple reward function can lead to complex policy.



IRL



Concluding Remarks

Generation

Conditional Generation

Unsupervised Conditional Generation

Relation to Reinforcement Learning

Generation

- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014
- Sebastian Nowozin, Botond Cseke, Ryota Tomioka, "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization", NIPS, 2016
- Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv, 2017
- Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville, Improved Training of Wasserstein GANs, NIPS, 2017
- Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based Generative Adversarial Network, arXiv, 2016
- Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, "Are GANs Created Equal? A Large-Scale Study", arXiv, 2017
- Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen Improved Techniques for Training GANs, NIPS, 2016
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter, GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, NIPS, 2017

Generation

- Naveen Kodali, Jacob Abernethy, James Hays, Zsolt Kira, "On Convergence and Stability of GANs", arXiv, 2017
- Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, Liqiang Wang, Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect, ICLR, 2018
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks, ICLR, 2018

Generational Generation

- Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee, Generative Adversarial Text to Image Synthesis, ICML, 2016
- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017
- Michael Mathieu, Camille Couprie, Yann LeCun, Deep multi-scale video prediction beyond mean square error, arXiv, 2015
- Mehdi Mirza, Simon Osindero, Conditional Generative Adversarial Nets, arXiv, 2014
- Takeru Miyato, Masanori Koyama, cGANs with Projection Discriminator, ICLR, 2018
- Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas, StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks, arXiv, 2017
- Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image Synthesis With Auxiliary Classifier GANs, ICML, 2017

Generational Generation

- Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015
- Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Unsupervised Conditional Generation

- Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV, 2017
- Zili Yi, Hao Zhang, Ping Tan, Minglun Gong, DualGAN: Unsupervised Dual Learning for Image-to-Image Translation, ICCV, 2017
- Tomer Galanti, Lior Wolf, Sagie Benaim, The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings, ICLR, 2018
- Yaniv Taigman, Adam Polyak, Lior Wolf, Unsupervised Cross-Domain Image Generation, ICLR, 2017
- Asha Anoosheh, Eirikur Agustsson, Radu Timofte, Luc Van Gool, ComboGAN: Unrestrained Scalability for Image Domain Translation, arXiv, 2017
- Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, Kevin Murphy, XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings, arXiv, 2017

Unsupervised Conditional Generation

- Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, Marc'Aurelio Ranzato, Fader Networks: Manipulating Images by Sliding Attributes, NIPS, 2017
- Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim, Learning to Discover Cross-Domain Relations with Generative Adversarial Networks, ICML, 2017
- Ming-Yu Liu, Oncel Tuzel, "Coupled Generative Adversarial Networks", NIPS, 2016
- Ming-Yu Liu, Thomas Breuel, Jan Kautz, Unsupervised Image-to-Image Translation Networks, NIPS, 2017
- Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, arXiv, 2017

Generative Adversarial Network

and its Applications to Signal Processing and Natural Language Processing

Part II: Speech Signal Processing

Outline of Part II

Speech Signal Generation

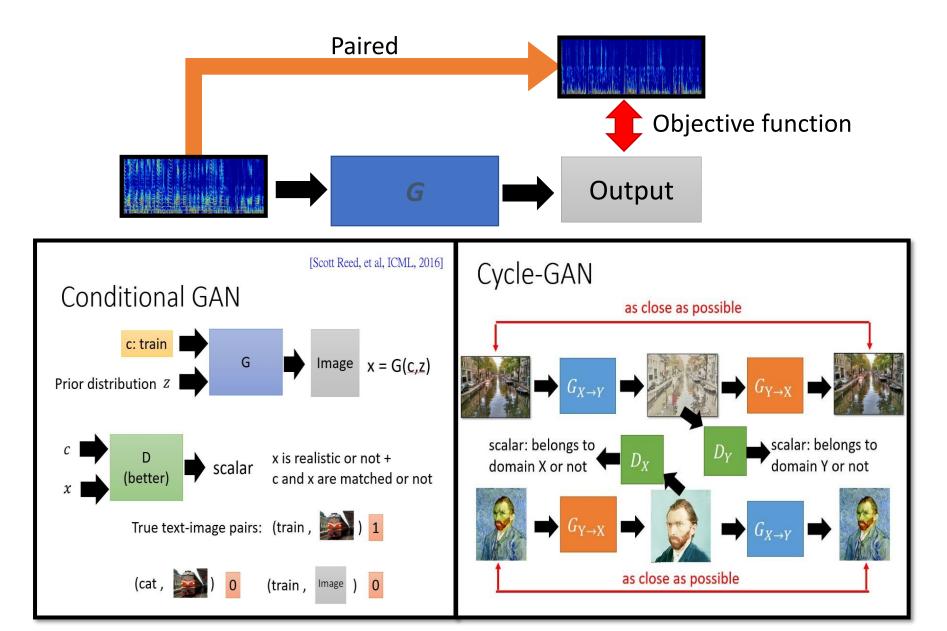
- Speech enhancement
- Postfilter, speech synthesis, voice conversion

Speech Signal Recognition

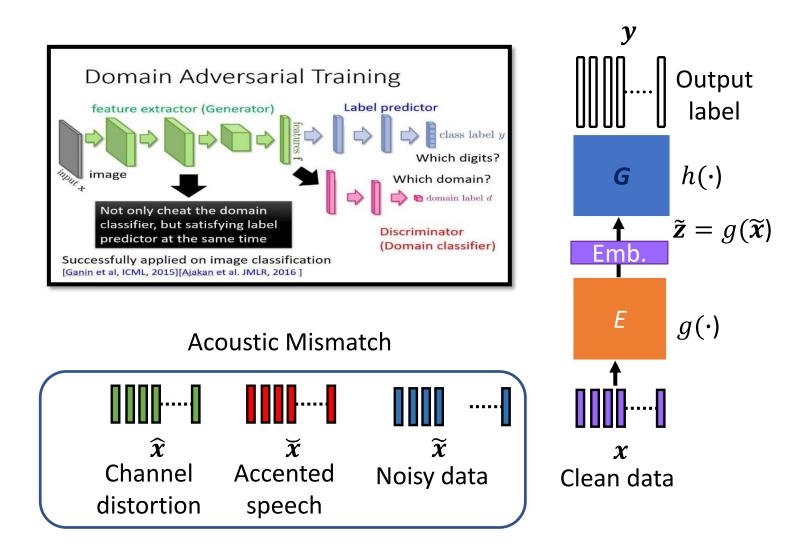
- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

Conclusion

Speech Signal Generation (Regression Task)



Speech, Speaker, Emotion Recognition and Lip-reading (Classification Task)



Outline of Part II

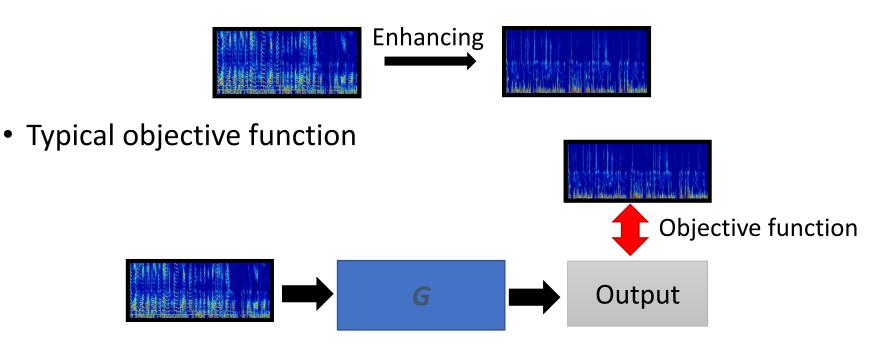
Speech Signal Generation

- Speech enhancement
- Postfilter, speech synthesis, voice conversion

Speech Signal Recognition

- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

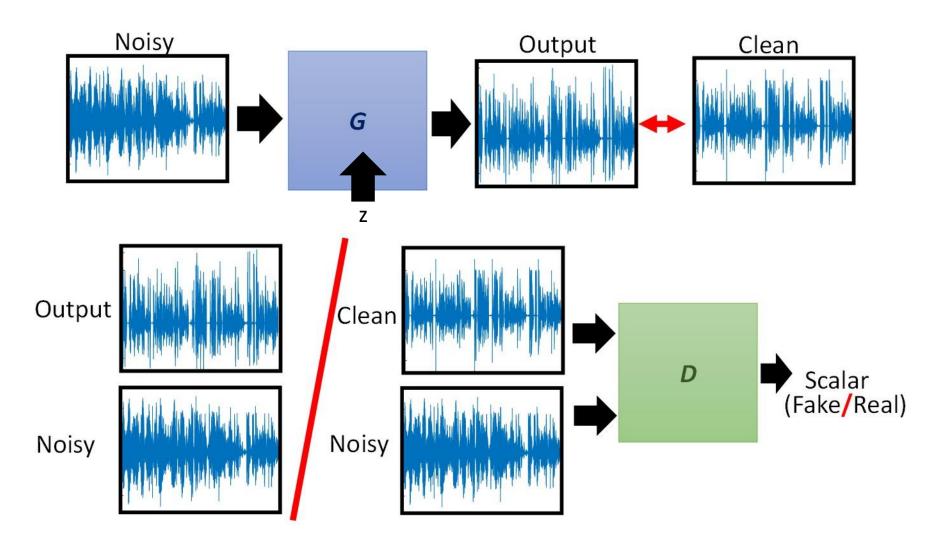
Conclusion



- Model structures of G: DNN [Wang et al. NIPS 2012; Xu et al., SPL 2014], DDAE [Lu et al., Interspeech 2013], RNN (LSTM) [Chen et al., Interspeech 2015; Weninger et al., LVA/ICA 2015], CNN [Fu et al., Interspeech 2016].
- Typical objective function
 - Mean square error (MSE) [Xu et al., TASLP 2015], L1 [Pascual et al., Interspeech 2017], likelihood [Chai et al., MLSP 2017], STOI [Fu et al., TASLP 2018].
 - \succ GAN is used as a new objective function to estimate the parameters in G.

Speech Enhancement

• Speech enhancement GAN (SEGAN) [Pascual et al., Interspeech 2017]



Speech Enhancement (SEGAN)

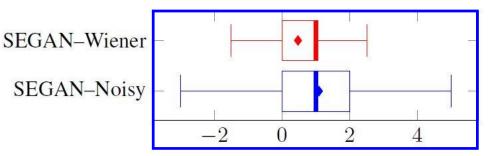
• Experimental results

Table 1: Objective evaluation results

Metric	Noisy	Wiener	SEGAN
PESQ	1.97	2.22	2.16
CSIG	3.35	3.23	3.48
CBAK	2.44	2.68	2.94
COVL	2.63	2.67	2.80
SSNR	1.68	5.07	7.73

Table 2: Subjective evaluation results.

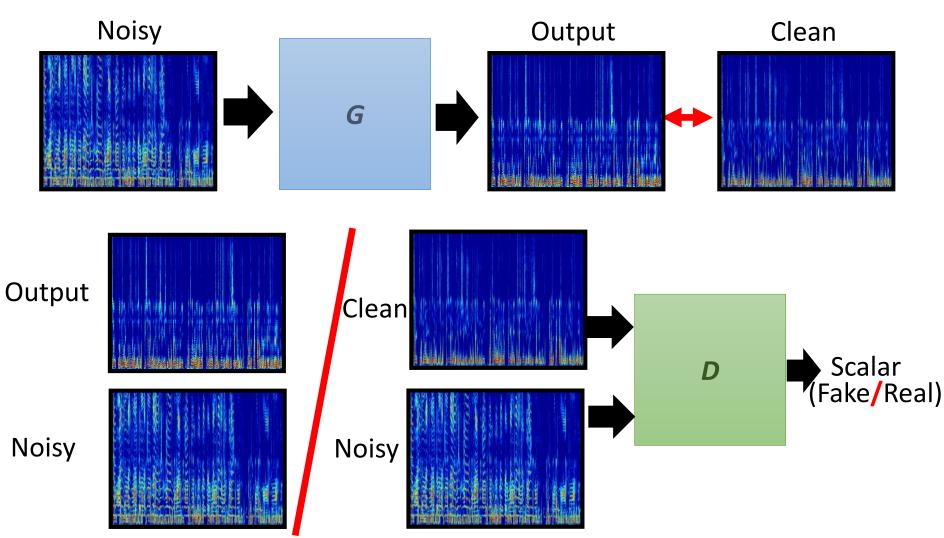
Metric	Noisy	Wiener	SEGAN
MOS	2.09	2.70	3.18



SEGAN yields better speech enhancement results than Noisy and Wiener.

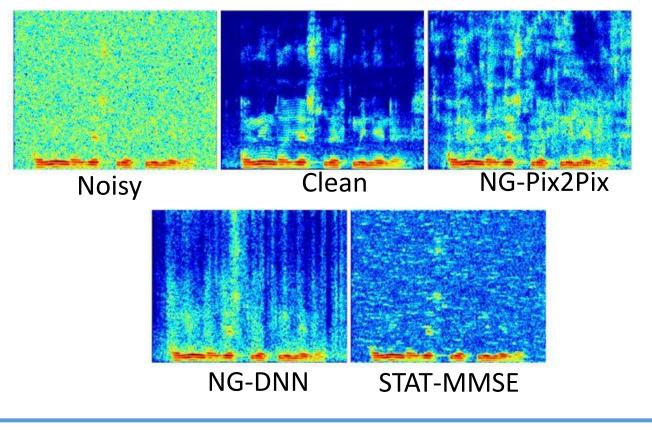
Speech Enhancement

• Pix2Pix [Michelsanti et al., Interpsech 2017]



Speech Enhancement (Pix2Pix)

- Spectrogram analysis
 - Fig. 2: Spectrogram comparison of Pix2Pix with baseline methods.



Pix2Pix outperforms STAT-MMSE and is competitive to DNN SE.

Speech Enhancement (Pix2Pix)

• Objective evaluation and speaker verification test

Table 3: Objective e	valuation results.
----------------------	--------------------

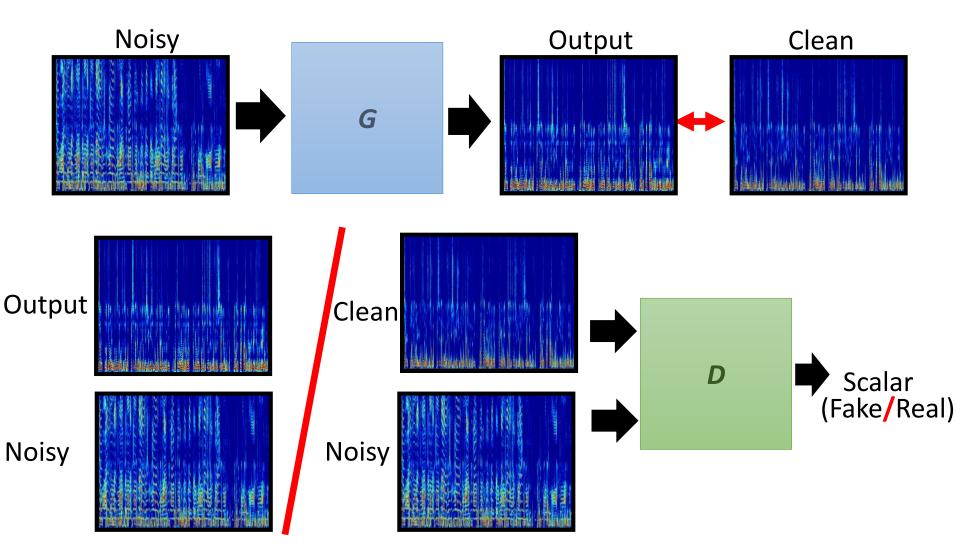
Table 4: Speaker verification results.

		Î		PI	ESQ				SNR	0	5	10	15	20	clean	mea
	SNR	0	5	10	15	20	mean		(a)	21.09	15.99	13.61	11.66	9.18	6.99	13.0
	(a)	1.20	1.42	1.79	2.40	3.13	1.99		(b)	17.69	12.58	8.17	6.53	6.27	5.80	9.5
1)	(b)	1.14	1.31	1.61	2.07	2.65		and	(c)	16.99	10.55	7.48	6.99	6.15	6.12	9.0
Babble	(c)	1.25	1.51	1.87	2.31	2.78		Airplane	(d)	17.19	8.84	5.44	5.05	4.63	3.74	7.4
Bal	(d)	1.20	1.48	1.98	2.52	2.93		Air	1.1	15.99		6.12		5.58	5.67	6221 60.0
8-0	(e)	1.24	1.52	1.88	2.31	2.78	1.95		(e)		8.99	1000 CC 200	6.12	660323020	1000 NO 100	8.08
									10	15 31						
	(f)	1.20	1.49	2.00 ST	2.53 TOI	2.93			(f)	15.31	7.89	5.58	4.77	4.76	5.44	7.2
	(f)	0	1.49 5						(f)	15.31	7.89					7.29
				ST	ĨŌĨ	2.93	2.03		(f)	15.31	7.89	(a) N	No enh	nance	ment	7.29
	(f) (a) (b)	0	5 0.56	ST 10	OI 15	2.93 20	2.03 mean		(f)	15.31	7.89		No enh	nance A-Ml	ment MSE	7.29
ble	(a)	0	5	ST 10 0.67	TOI 15 0.77	2.93 20 0.85	2.03 mean 0.66		(f)	15.31	7.89	(a) N	No enh	nance	ment MSE	7.29
abble	(a) (b)	0 0.44 0.43	5 0.56 0.56	ST 10 0.67 0.66	TOI 15 0.77 0.74	2.93 20 0.85 0.81	2.03 mean 0.66 0.64		(f)	15.31	7.89	(a) N (b)	lo enf STS	nance A-Ml	ment MSE DNN	7.29
Babble	(a) (b) (c)	0 0.44 0.43 0.50	5 0.56 0.56 0.63	ST 10 0.67 0.66 0.72	TOI 15 0.77 0.74 0.79	2.93 20 0.85 0.81 0.86	2.03 mean 0.66 0.64 0.70		(f)	15.31	7.89	(a) N (b) (c)	lo enf STS	nance A-MI NS-I	ment MSE DNN 2Pix	7.29

- 1. From the objective evaluations, Pix2Pix outperforms Noisy and MMSE and is competitive to DNN SE.
- 2. From the speaker verification results, Pix2Pix outperforms the baseline models when the clean training data is used.

Speech Enhancement

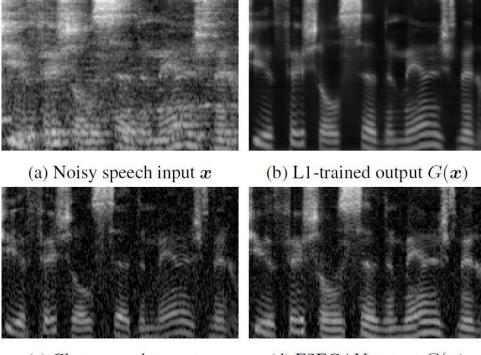
• Frequency-domain SEGAN (FSEGAN) [Donahue et al., ICASSP 2018]



Speech Enhancement (FSEGAN)

• Spectrogram analysis

Fig. 2: Spectrogram comparison of FSEGAN with L1-trained method.



(c) Clean speech target y

(d) FSEGAN output $G(\boldsymbol{x})$

FSEGAN reduces both additive noise and reverberant smearing.

Speech Enhancement (FSEGAN)

• ASR results

Table 5: WER (%) of SEGAN and FSEGA	۱N.
-------------------------------------	-----

Test Set	Enhancer	ASR-Clean WER	ASR-MTR WER
Clean	None	11.9	14.3
MTR	None SEGAN	72.2 80.7	$20.3 \\ 52.8$
	FSEGAN	33.3	25.4

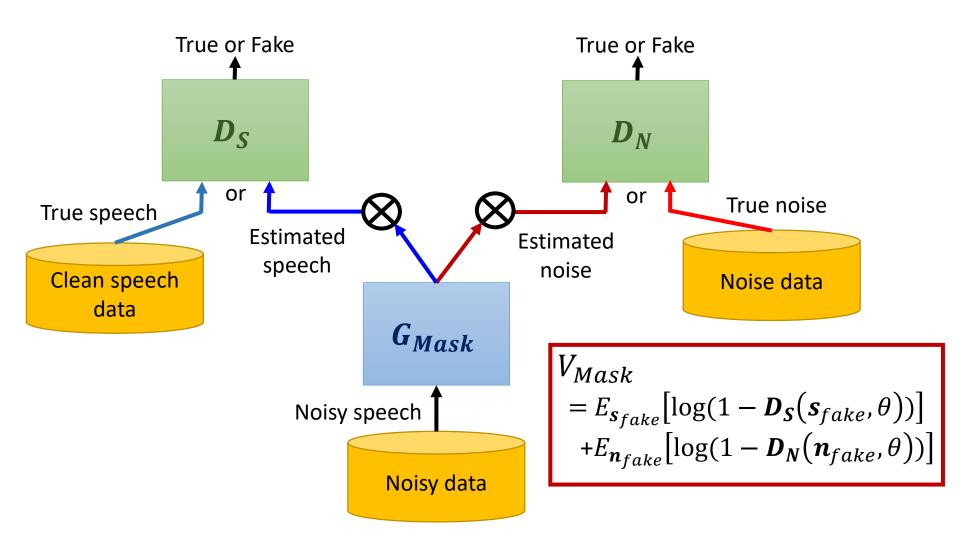
Table 6: WER (%) of FSEGAN with retrain.

Model	WER (%)
MTR Baseline *	20.3
+ Stereo	19.0
MTR + FSEGAN Enhancer *	25.4
+ Retraining	21.0
+ Hybrid Retraining	17.6
MTR + L1-trained Enhancer * + Retraining + Hybrid Retraining	$21.4 \\ 18.0 \\ 17.1$

- From Table 5, (1) FSEGAN improves recognition results for ASR-Clean.
 (2) FSEGAN outperforms SEGAN as front-ends.
- 2. From Table 6, (1) Hybrid Retraining with FSEGAN outperforms Baseline;(2) FSEGAN retraining slightly underperforms L1–based retraining.

Speech Enhancement

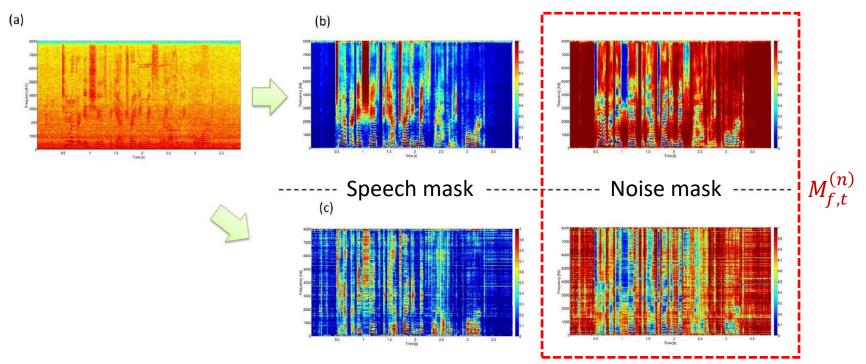
• Adversarial training based mask estimation (ATME) [Higuchi et al., ASRU 2017]



Speech Enhancement (ATME)

• Spectrogram analysis

Fig. 3: Spectrogram comparison of (a) noisy; (b) MMSE with supervision; (c) ATMB without supervision.



The proposed adversarial training mask estimation can capture speech/noise signals without supervised data.

Speech Enhancement (ATME)

- Mask-based beamformer for robust ASR
- The estimated mask parameters are used to compute spatial covariance matrix for MVDR beamformer.
- ➢ $\hat{s}_{f,t} = \mathbf{w}_f^H \mathbf{y}_{f,t}$, where $\hat{s}_{f,t}$ is the enhanced signal, and $\mathbf{y}_{f,t}$ denotes the observation of *M* microphones, *f* and *t* are frequency and time indices; \mathbf{w}_f denotes the beamformer coefficient.

> The MVDR solves
$$\mathbf{w}_f$$
 by: $\mathbf{w}_f = \frac{(R_f^{(s+n)})^{-1} \mathbf{h}_f}{\mathbf{h}_f^{\mathrm{H}} (R_f^{(s+n)})^{-1} \mathbf{h}_f}$

> To estimate \mathbf{h}_{f} , the spatial covariance matrix of the target signal, $R_{f}^{(s)}$, is computed by : $R_{f}^{(s)} = R_{f}^{(s+n)} - R_{f}^{(n)}$, where $R_{f}^{(n)} = \frac{M_{f,t}^{(n)} \mathbf{y}_{f,t} \mathbf{y}_{f,t}^{H}}{\Sigma_{f,t} M_{f,t}^{(n)}}$, $M_{f,t}^{(n)}$ was computed by AT.

Speech Enhancement (ATME)

• ASR results

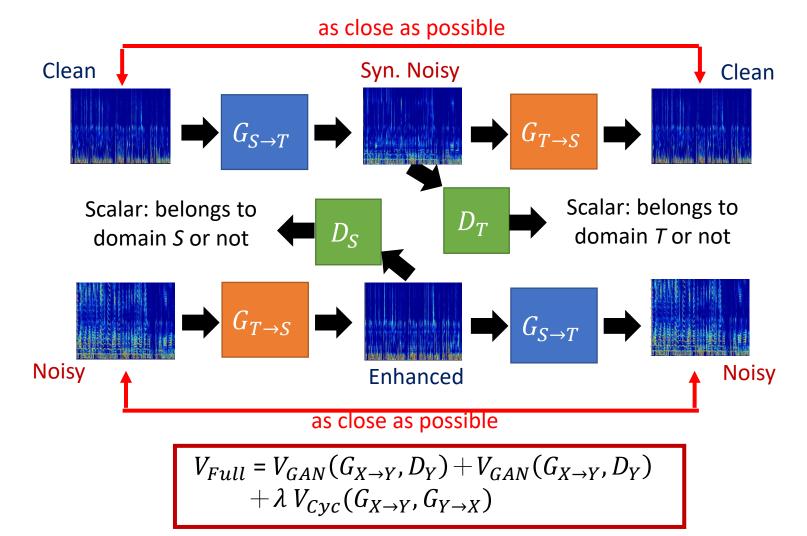
Table 7: WERs (%) for the development and evaluation sets.

evetame		×3	dev					eval		
systems	avg	bus	caf	ped	str	avg	bus	caf	ped	str
Unprocessed	9.01	14.00	7.94	6.03	8.05	15.60	22.55	16.21	12.89	10.74
Adversarial Training	5.00	7.60	4.09	4.03	4.29	7.58	10.24	7.51	6.20	6.39
MMSE	4.83	7.20	4.04	3.98	4.10	7.04	9.25	6.67	6.02	6.24

ATME provides significant improvements over Unprocessed.
 Unsupervised ATME slightly underperforms supervised MMSE.

Speech Enhancement (AFT)

• Cycle-GAN-based acoustic feature transformation (AFT) [Mimura et al., ASRU 2017]



Speech Enhancement (AFT)

• ASR results on noise robustness and style adaptation

acoustic model	feature	cycle loss	λ and μ	WER	ID
no adapt.	no adapt.	-		41.08	(1)
no adapt.	adapt. with $G_{T \to S}$	no	1, 1	55.45	(2)
		yes	1, 1	37.34	(3)
		yes	trained	36.56	(4)
adapt. with $G_{S \to T}$	no adapt.	yes	1, 1	35.98	(5)
		yes	trained	34.31	(6)

Table 8: Noise robust ASR.

Table 9: Speaker style adaptation.

source	target	feature	WER
JNAS	CSJ-SPS	no adapt.	26.47
		adapt. with $G_{T \to S}$	25.93
CSJ-APS	CSJ-SPS	no adapt.	17.15
		adapt. with $G_{T \to S}$	16.60

S: Clean; T: Noisy

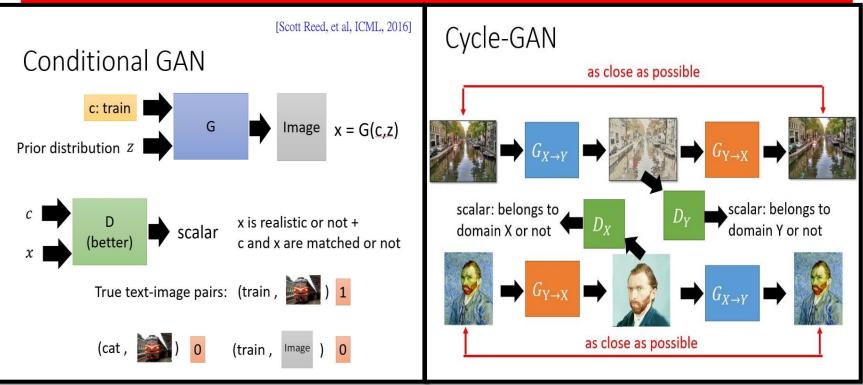
JNAS: Read; CSJ-SPS: Spontaneous (relax); CSJ-APS: Spontaneous (formal);

- 1. $G_{T \rightarrow S}$ can transform acoustic features and effectively improve ASR results for both noisy and accented speech.
- 2. $G_{S \rightarrow T}$ can be used for model adaptation and effectively improve ASR results for noisy speech.

Outline of Part II

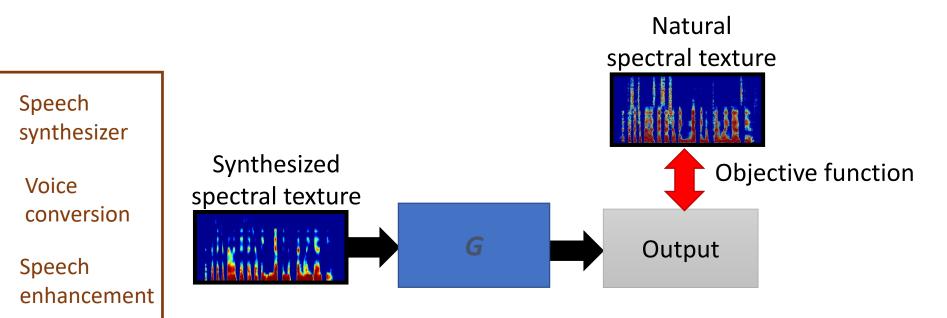
Speech Signal Generation

- Speech enhancement
- Postfilter, speech synthesis, voice conversion



Postfilter

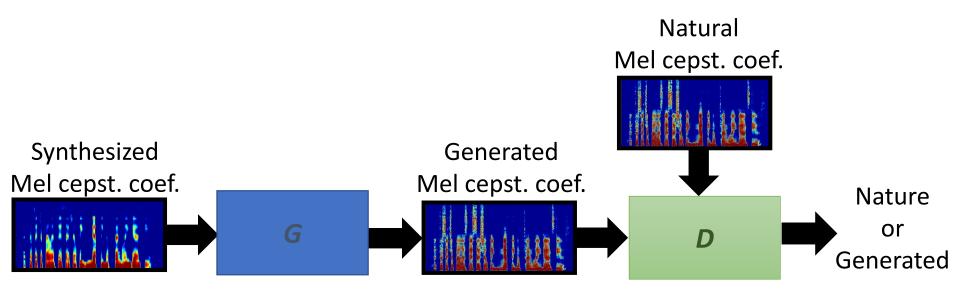
• Postfilter for synthesized or transformed speech



- Conventional postfilter approaches for G estimation include global variance (GV) [Toda et al., IEICE 2007], variance scaling (VS) [Sil'en et al., Interpseech 2012], modulation spectrum (MS) [Takamichi et al., ICASSP 2014],DNN with MSE criterion [Chen et al., Interspeech 2014; Chen et al., TASLP 2015].
- ➢ GAN is used a new objective function to estimate the parameters in G.

Postfilter

• GAN postfilter [Kaneko et al., ICASSP 2017]

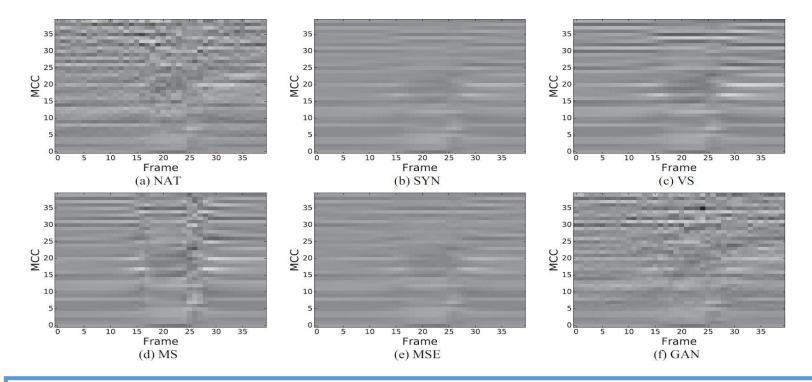


- > Traditional MMSE criterion results in statistical averaging.
- > GAN is used as a new objective function to estimate the parameters in G.
- The proposed work intends to further improve the naturalness of synthesized speech or parameters from a synthesizer.

Postfilter (GAN-based Postfilter)

Spectrogram analysis

Fig. 4: Spectrograms of: (a) NAT (nature); (b) SYN (synthesized); (c) VS (variance scaling); (d) MS (modulation spectrum); (e) MSE; (f) GAN postfilters.

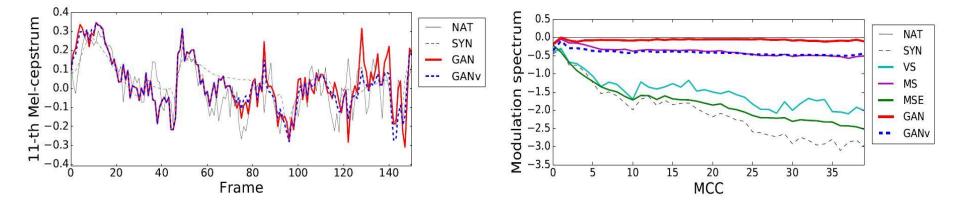


GAN postfilter reconstructs spectral texture similar to the natural one.

Postfilter (GAN-based Postfilter)

- Objective evaluations
- Fig. 5: Mel-cepstral trajectories (GANv: GAN was applied in voiced part).

Fig. 6: Averaging difference in modulation spectrum per Melcepstral coefficient.



GAN postfilter reconstructs spectral texture similar to the natural one.

Postfilter (GAN-based Postfilter)

Subjective evaluations

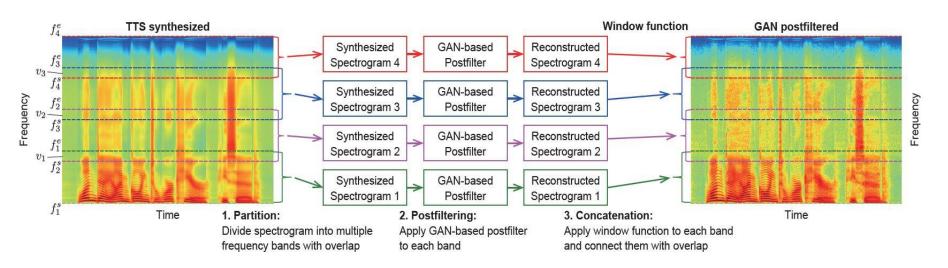
Table 10: Preference score (%). Bold font indicates the numbers over 30%.

	Former	Latter	Neutral
GAN vs. SYN	56.5 ± 4.9	22.0 ± 4.1	21.5 ± 4.0
GAN vs. GANv	11.3 ± 3.1	37.3 ± 4.8	51.5 ± 4.9
GAN vs. NAT	16.8 ± 3.7	53.5 ± 4.9	29.8 ± 4.5
GANv vs. NAT	30.3 ± 4.5	34.5 ± 4.7	35.3 ± 4.7

GAN postfilter significantly improves the synthesized speech.
 GAN postfilter is effective particularly in voiced segments.
 GANv outperforms GAN and is comparable to NAT.

Postfilter (GAN-postfilter-SFTF)

• GAN post-filter for STFT spectrograms [Kaneko et al., Interspeech 2017]

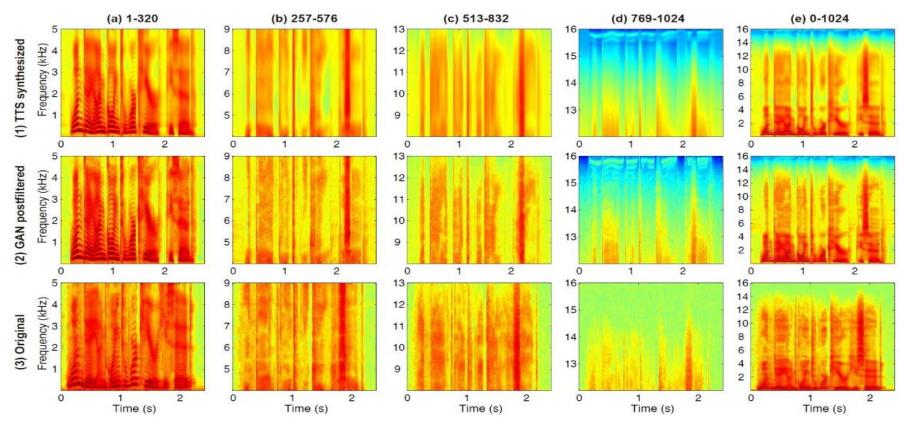


- GAN postfilter was applied on high-dimensional STFT spectrograms.
- The spectrogram was partitioned into N bands (each band overlaps its neighboring bands).
- > The GAN-based postfilter was trained for each band.
- > The reconstructed spectrogram from each band was smoothly connected.

Postfilter (GAN-postfilter-SFTF)

Spectrogram analysis

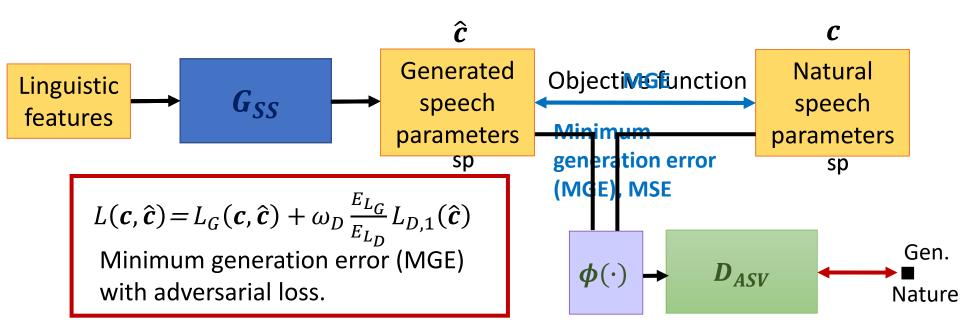
Fig. 7: Spectrograms of: (1) SYN, (2) GAN, (3) Original (NAT)



GAN postfilter reconstructs spectral texture similar to the natural one.

Speech Synthesis

• Spretchinggouibteisife avithment (Dappootfinggerechingatrianm (ASNS) [Saito et al., ICASSP 2017]



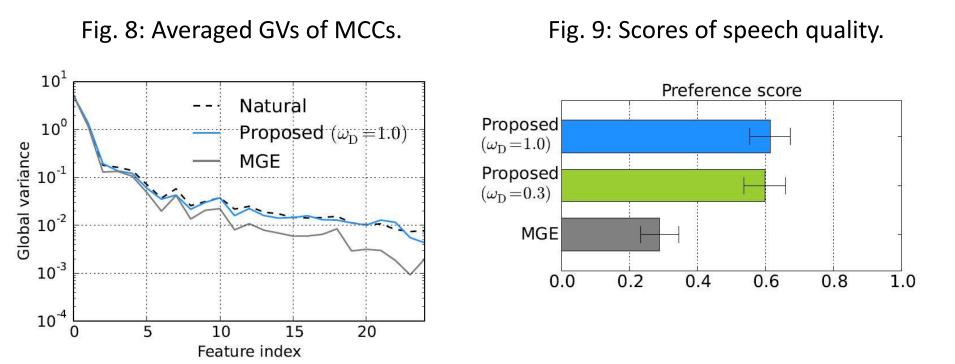
$$L_{D}(\boldsymbol{c}, \hat{\boldsymbol{c}}) = L_{D,1}(\boldsymbol{c}) + L_{D,0}(\hat{\boldsymbol{c}})$$

$$L_{D,1}(\boldsymbol{c}) = -\frac{1}{T} \sum_{t=1}^{T} \log(D(\boldsymbol{c}_{t})) \dots \text{NAT}$$

$$L_{D,0}(\hat{\boldsymbol{c}}) = -\frac{1}{T} \sum_{t=1}^{T} \log(1 - D(\hat{\boldsymbol{c}}_{t})) \dots \text{SYN}$$

Speech Synthesis (ASV)

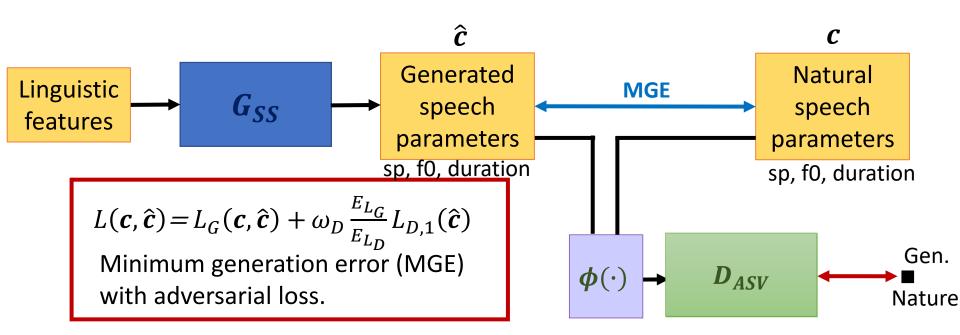
Objective and subjective evaluations



The proposed algorithm generates MCCs similar to the natural ones.
 The proposed algorithm outperforms conventional MGE training.

Speech Synthesis

• Speech synthesis with GAN (SS-GAN) [Saito et al., TASLP 2018]



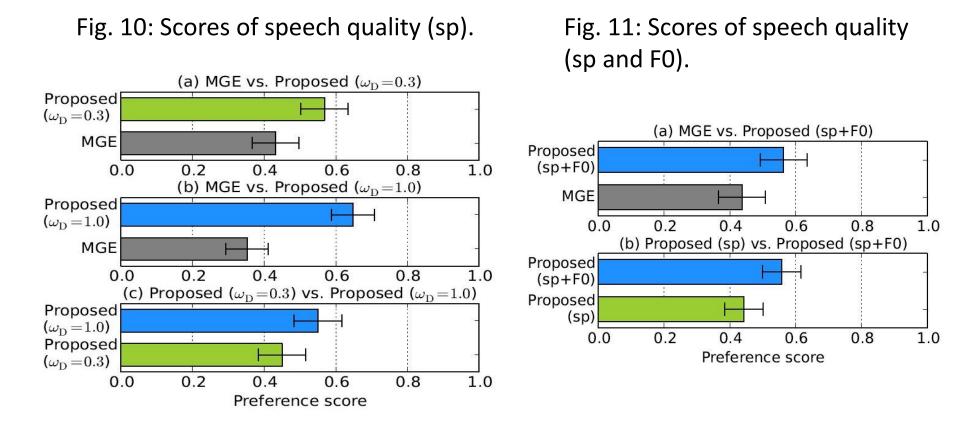
$$L_{D}(\boldsymbol{c}, \hat{\boldsymbol{c}}) = L_{D,1}(\boldsymbol{c}) + L_{D,0}(\hat{\boldsymbol{c}})$$

$$L_{D,1}(\boldsymbol{c}) = -\frac{1}{T} \sum_{t=1}^{T} \log(D(\boldsymbol{c}_{t})) \dots \text{NAT}$$

$$L_{D,0}(\hat{\boldsymbol{c}}) = -\frac{1}{T} \sum_{t=1}^{T} \log(1 - D(\hat{\boldsymbol{c}}_{t})) \dots \text{SYN}$$

Speech Synthesis (SS-GAN)

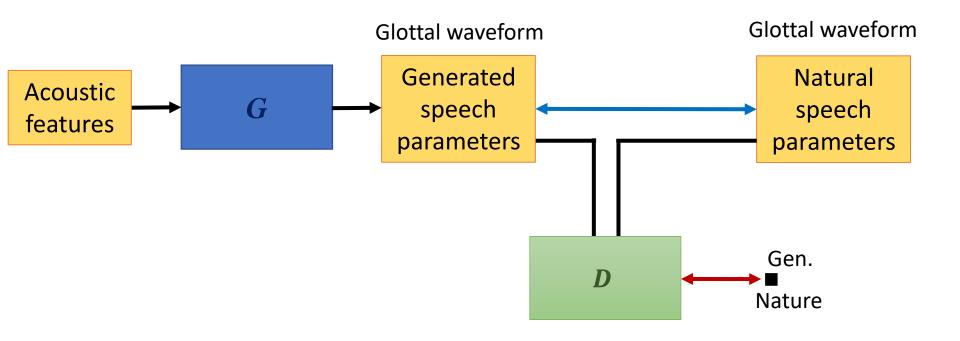
Subjective evaluations



The proposed algorithm works for both spectral parameters and FO.

Speech Synthesis

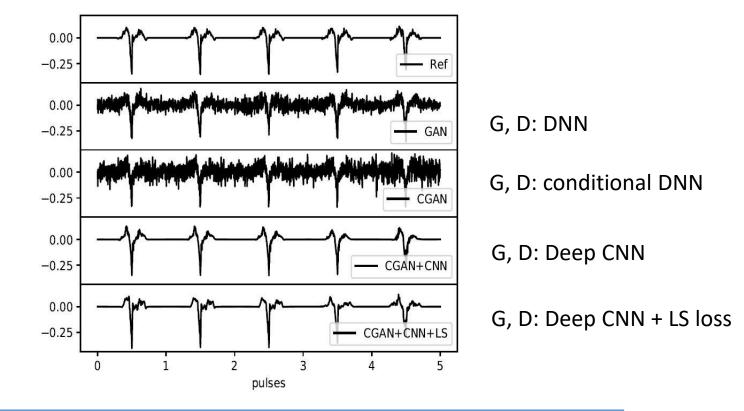
• Speech synthesis with GAN glottal waveform model (GlottGAN) [Bollepalli et al., Interspeech 2017]



Speech Synthesis (GlottGAN)

• Objective evaluations

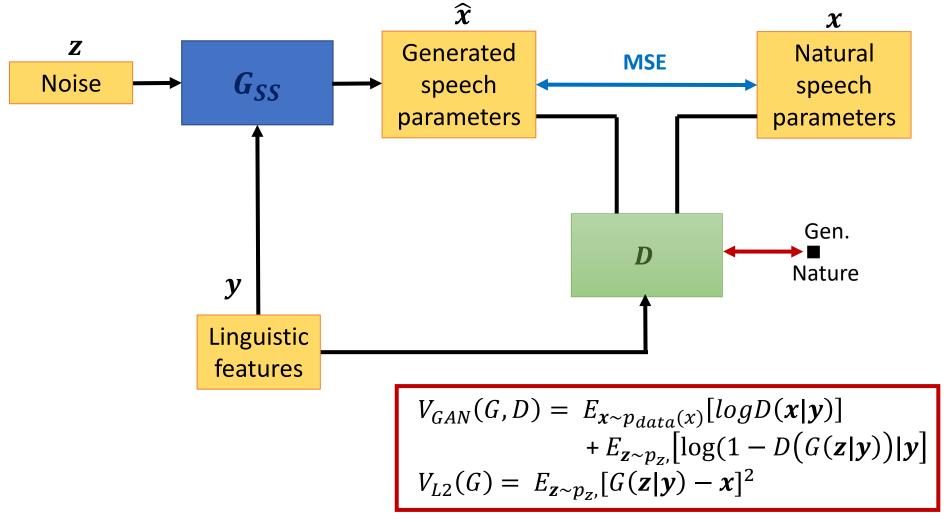
Fig. 12: Glottal pulses generated by GANs.



The proposed GAN-based approach can generate glottal waveforms similar to the natural ones.

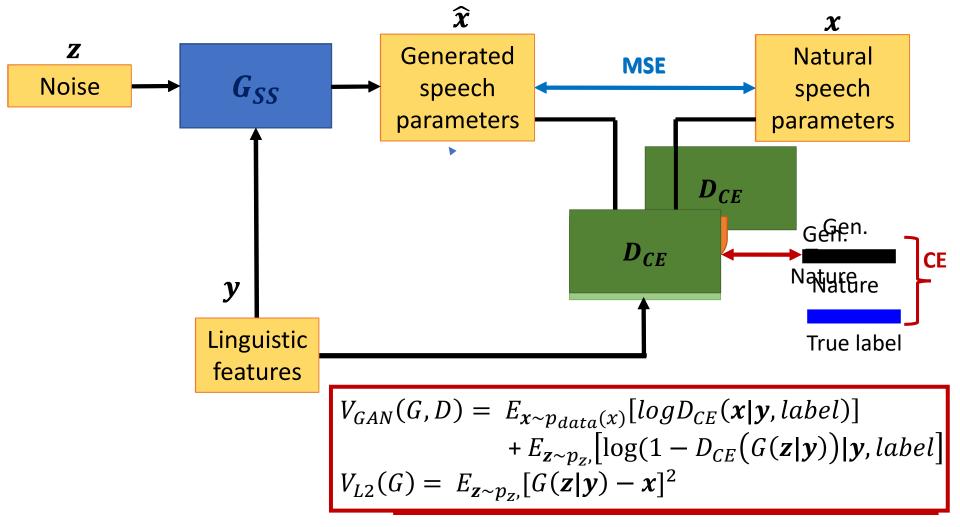
Speech Synthesis

• Speech synthesis with GAN & multi-task learning (SS-GAN-MTL) [Yang et al., ASRU 2017]



Speech Synthesis (SS-GAN-MTL)

• Speech synthesis with GAN & multi-task learning (SS-GAN-MTL) [Yang et al., ASRU 2017]



Speech Synthesis (SS-GAN-MTL)

Objective and subjective evaluations

	,			0			X 7
Methods	MCD (dB)	F_0 RMSE (Hz)	V/UV (%)		4.5%	29.5%	27.0%
BLSTM	4.624	18.544	6.447		GAN	Neutral	BLSTM
ASV [16]	4.670	18.871	6.562		.8%	30.5%	28.7%
GAN	4.633	18.678	6.492	G	AN	Neutral	ASV
GAN-PC	4.628	18.616	6.464	41	.5%	32.2%	26.3%
				G	AN	Neutral	GAN-PC
				34.19	6	36.8%	29.0%
				GAN-I	PC	Neutral	BLSTM

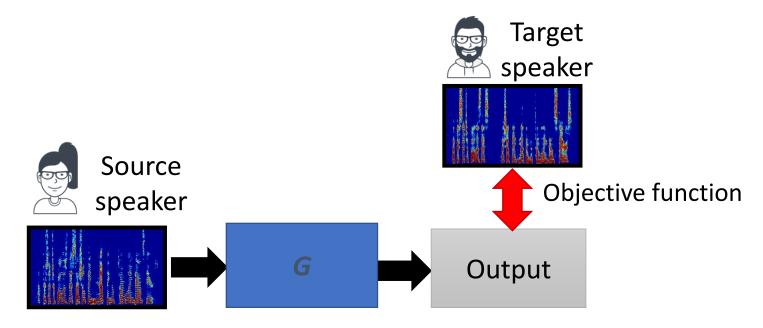
Fig. 13: The preference score (%).

Table 11: Objective evaluation results.

- 1. From objective evaluations, no remarkable difference is observed.
- 2. From subjective evaluations, GAN outperforms BLSTM and ASV, while GAN-PC underperforms GAN.

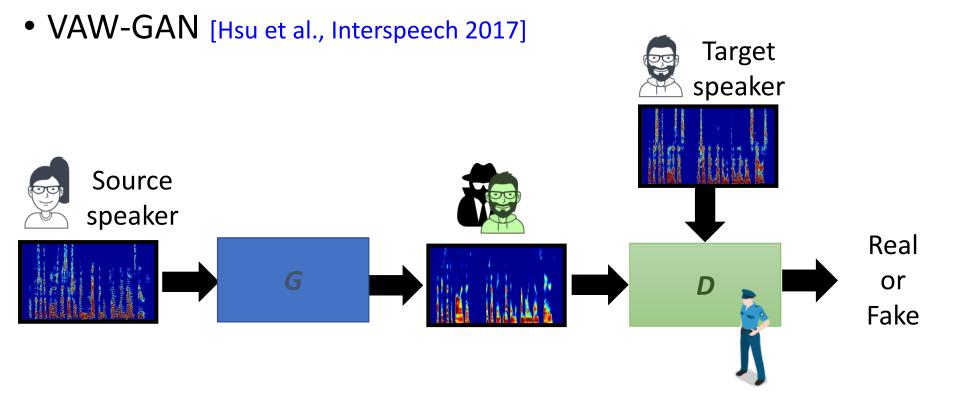
Voice Conversion

• Convert (transform) speech from source to target



Conventional VC approaches include Gaussian mixture model (GMM) [Toda et al., TASLP 2007], non-negative matrix factorization (NMF) [Wu et al., TASLP 2014; Fu et al., TBME 2017], locally linear embedding (LLE) [Wu et al., Interspeech 2016], restricted Boltzmann machine (RBM) [Chen et al., TASLP 2014], feed forward NN [Desai et al., TASLP 2010], recurrent NN (RNN) [Nakashika et al., Interspeech 2014].

Voice Conversion



Conventional MMSE approaches often encounter the "over-smoothing" issue.

- GAN is used a new objective function to estimate G.
- The goal is to increase the naturalness, clarity, similarity of converted speech.

 $V(G,D) = V_{GAN}(G,D) + \lambda V_{VAE}(\boldsymbol{x}|\boldsymbol{y})$

Voice Conversion (VAW-GAN)

Objective and subjective evaluations

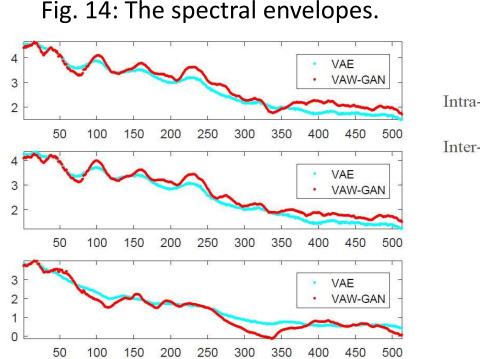
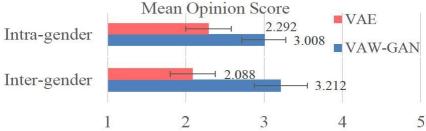


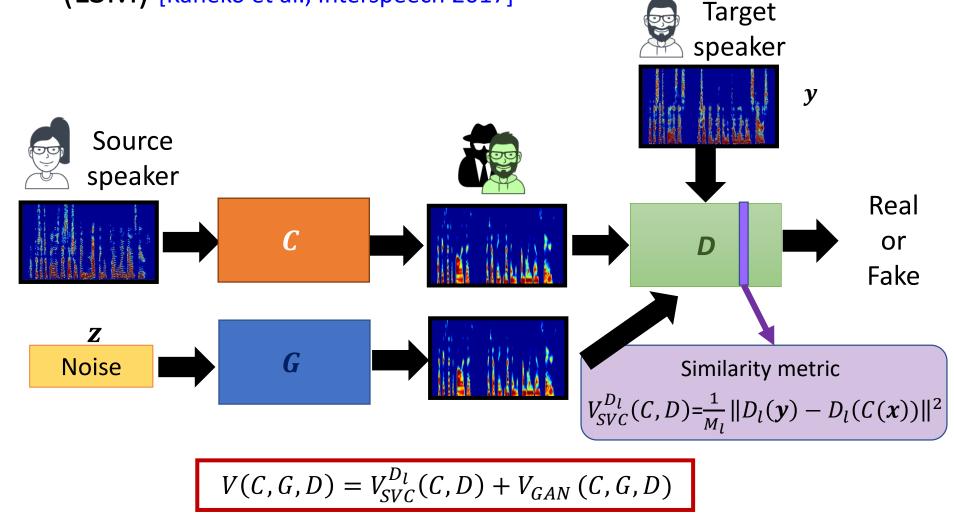
Fig. 15: MOS on naturalness.



VAW-GAN outperforms VAE in terms of objective and subjective evaluations with generating more structured speech.

Voice Conversion

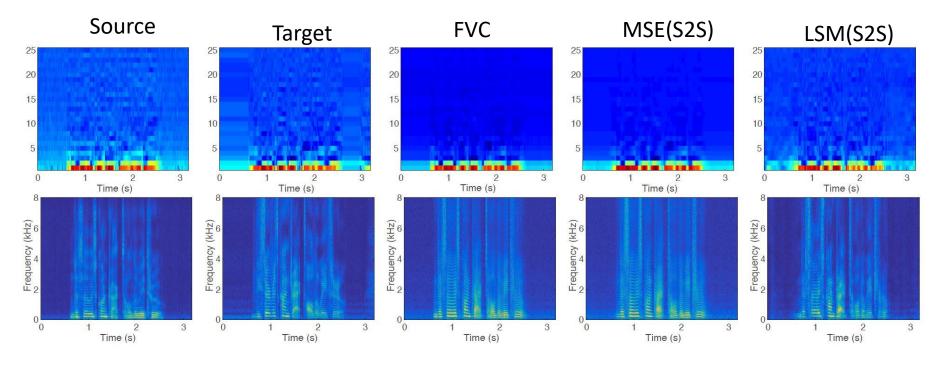
 Sequence-to-sequence VC with learned similarity metric (LSM) [Kaneko et al., Interspeech 2017]



Voice Conversion (LSM)

• Spectrogram analysis

Fig. 16: Comparison of MCCs (upper) and STFT spectrograms (lower).



The spectral textures of LSM are more similar to the target ones.

Voice Conversion (LSM)

Subjective evaluations

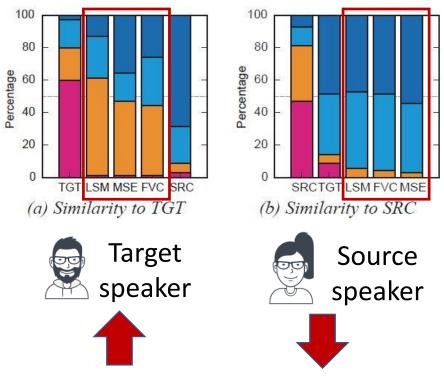
Table 12: Preference scores for naturalness.

	Former	Latter	Neutral
FVC vs. LSM MSE vs. LSM	$17.1 \pm 6.3 \\ 10.0 \pm 5.0$		$\begin{array}{c} 10.0 \pm 5.0 \\ 5.7 \pm 3.9 \end{array}$

Table 12: Preference scores for clarity.

	Former	Latter	Neutral
FVC vs. LSM MSE vs. LSM	$\begin{array}{c} 32.9 \pm 7.9 \\ 27.1 \pm 7.5 \end{array}$	$54.3 \pm 8.4 \\ 65.0 \pm 8.0$	$\begin{array}{c} 12.9 \pm 5.6 \\ 7.9 \pm 4.5 \end{array}$

Fig. 17: Similarity of TGT and SRC with VCs.

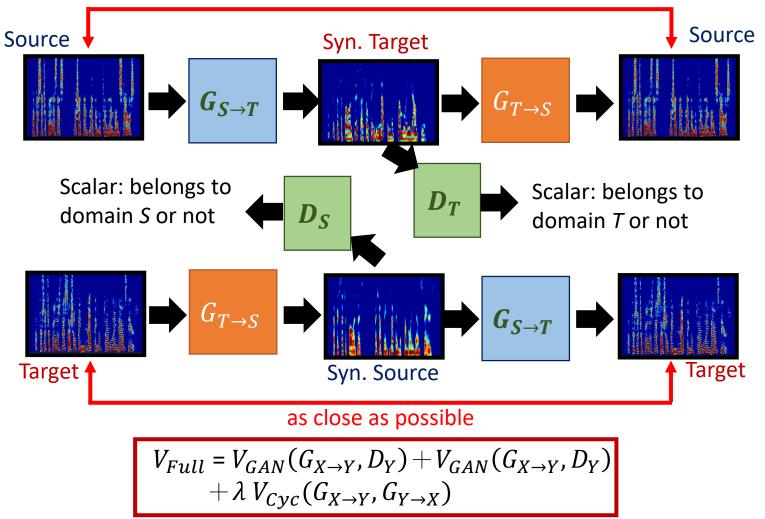


LSM outperforms FVC and MSE in terms of subjective evaluations.

Voice Conversion

• CycleGAN-VC [Kaneko et al., arXiv 2017]

as close as possible



Voice Conversion (CycleGAN-VC)

Subjective evaluations

(a) Intra-gender (SF1-TF2) (b) Inter-gender (SF1-TM3) (a) Intra-gender (SF1-TF2) (b) Inter-gender (SF1-TM3) 4.7 4.7 Similar ty to S Smilarity to milarity to 100 100 MOS score 3.9 3.8 4 score 80 80 MOS 60 60 2.3 40 40 20 20 Original Synth Proposed Baseline Original Synth Proposed Baseline P B B S B P S Same: Absolutely sure Same: Not sure Different: Not sure Different: Absolutely sure Target Source speaker speaker

Fig. 19: Similarity of to source and

T:Target; P: Proposed; B:Baseline

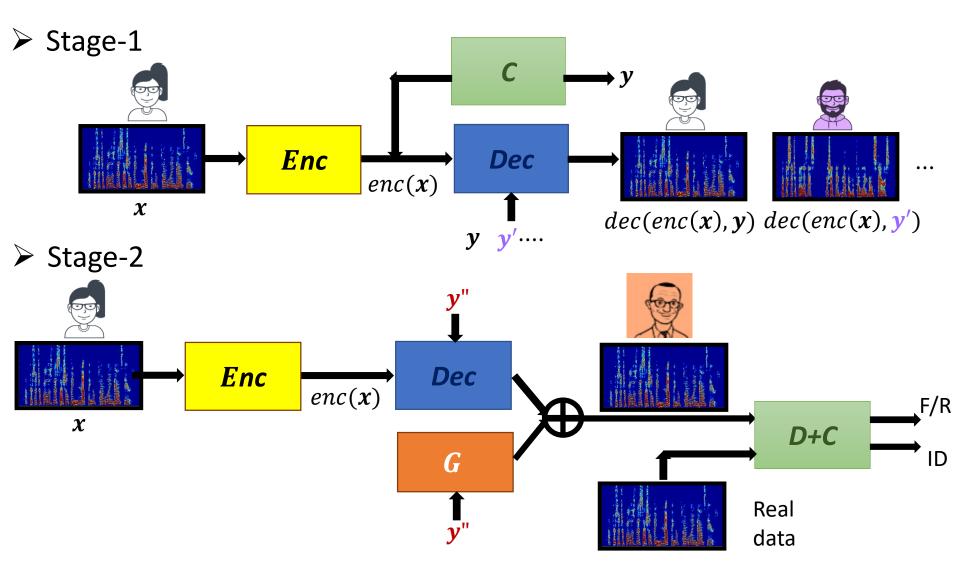
to target speakers. S: Source;

Fig. 18: MOS for naturalness.

- 1. The proposed method uses **non-parallel** data.
- 2. For naturalness, the proposed method outperforms baseline.
- 3. For similarity, the proposed method is comparable to the baseline.

Voice Conversion

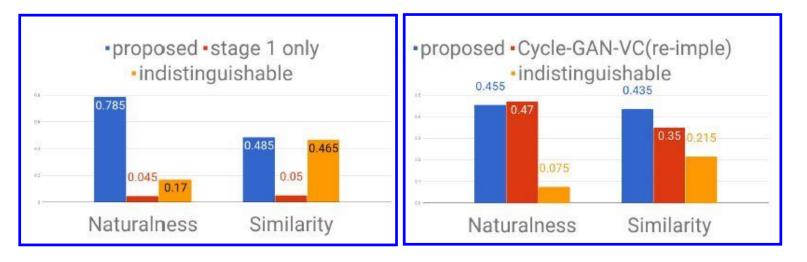
• Multi-target VC [Chou et al., arxiv 2018]



Voice Conversion (Multi-target VC)

Subjective evaluations

Fig. 20: Preference test results



- 1. The proposed method uses **non-parallel** data.
- 2. The multi-target VC approach outperforms one-stage only.
- 3. The multi-target VC approach is comparable to Cycle-GAN-VC in terms of the naturalness and the similarity.

Outline of Part II

Speech Signal Generation

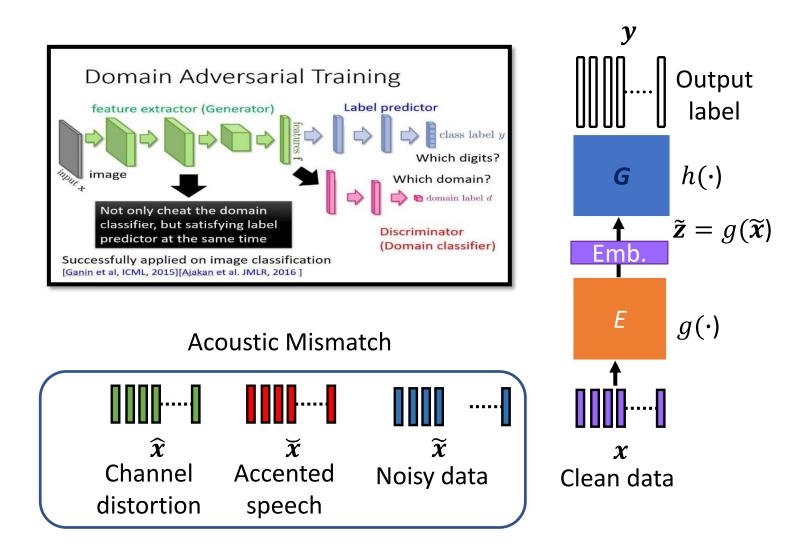
- Speech enhancement
- Postfilter, speech synthesis, voice conversion

Speech Signal Recognition

- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

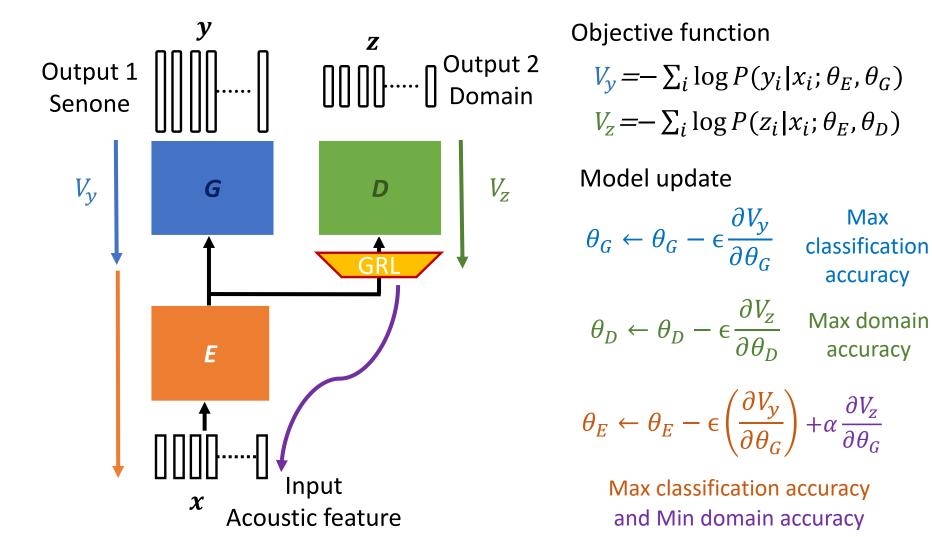
Conclusion

Speech, Speaker, Emotion Recognition and Lip-reading (Classification Task)



Speech Recognition

 Adversarial multi-task learning (AMT) [Shinohara Interspeech 2016]



Max

accuracy

accuracy

Speech Recognition (AMT)

 ASR results in known (k) and unknown (unk) noisy conditions

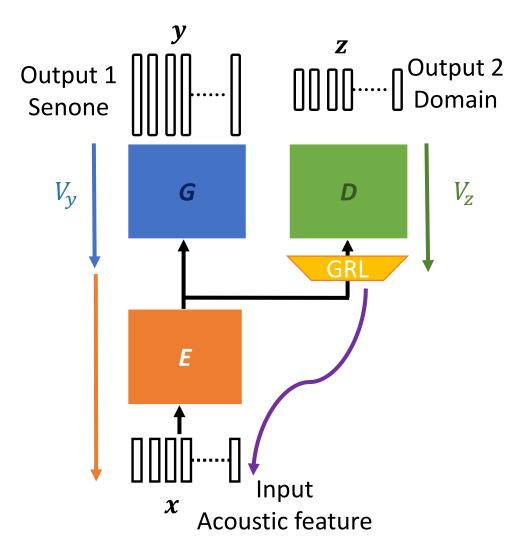
Table 13: WER of DNNs with single-task learning (ST) and AMT.

	noise	ST	AMT	RERR
k	car 2000cc	5.83	5.56	4.63
k	exhib. booth	6.80	6.66	2.06
k	station	7.89	7.76	1.65
k	crossing	6.96	6.65	4.45
unk	car 1500cc	5.58	5.46	2.15
unk	exhib. aisle	7.71	6.93	10.12
unk	factory	12.17	12.92	-6.16
unk	highway	9.73	9.52	2.16
unk	crowd	6.72	6.40	4.76
unk	server room	8.54	7.76	9.13
unk	air cond.	6.96	6.98	-0.29
unk	elev. hall	9.23	9.60	-4.01
-	average	7.84	7.68	2.04

The AMT-DNN outperforms ST-DNN with yielding lower WERs.

Speech Recognition

 Domain adversarial training for accented ASR (DAT) [Sun et al., ICASSP2018]



Objective function $V_{v} = -\sum_{i} \log P(y_{i}|x_{i}; \theta_{E}, \theta_{G})$ $V_z = -\sum_i \log P(z_i | x_i; \theta_E, \theta_D)$ Model update

 $\theta_G \leftarrow \theta_G - \epsilon \frac{\partial V_y}{\partial \theta_C}$ Max classification

accuracy $\theta_D \leftarrow \theta_D - \epsilon \frac{\partial V_Z}{\partial \theta_D}$ Max domain accuracy

Max

$$\theta_E \leftarrow \theta_E - \epsilon \left(\frac{\partial V_y}{\partial \theta_G}\right) + \alpha \frac{\partial V_z}{\partial \theta_G}$$

Max classification accuracy and Min domain accuracy

Speech Recognition (DAT)

• ASR results on accented speech

training data	N	test							
training data	Λ	STD	FJ	JS	JX	SC	GD	HN	Avg.
STD	17	15.55	23.58	15.75	14.08	15.62	15.32	19.34	17.28
STD + (600hrs with trans)	-	14.22	14.84	9.41	8.68	9.13	9.62	11.89	10.60
STD + (600hrs no trans)	0.03	15.37	22.96	14.48	13.79	15.35	14.86	18.24	16.61

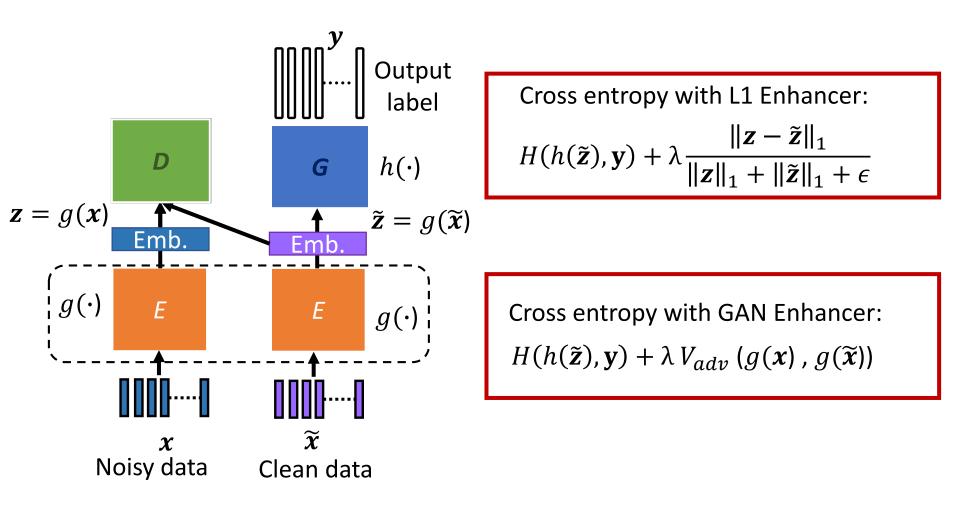
Table 14: WER of the baseline and adapted model.

STD: standard speech

- 1. With labeled transcriptions, ASR performance notably improves.
- 2. DAT is effective in learning features invariant to domain differences with and without labeled transcriptions.

Speech Recognition

• Robust ASR using GAN enhancer (GAN-Enhancer) [Sriram et al., arXiv 2017]



Speech Recognition (GAN-Enhancer)

• ASR results on far-field speech:

Fig. 15: WER of GAN enhancer and the baseline methods.

Model	Near	-Field	Far-Field		
	CER	WER	CER	WER	
seq-to-seq	7.43%	21.18%	23.76%	50.84%	
seq-to-seq + far-field Augmentation	7.69%	21.32%	12.47%	30.59%	
seq-to-seq + L^1 -Distance Penalty	7.54%	20.45%	12.00%	29.19%	
seq-to-seq + GAN Enhancer	7.78%	21.07%	11.26%	28.12%	

GAN Enhancer outperforms the Augmentation and L1-Enhancer approaches on far-field speech.

Outline of Part II

Speech Signal Generation

- Speech enhancement
- Postfilter, speech synthesis, voice conversion

Speech Signal Recognition

- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

Conclusion

Speaker Recognition

• Domain adversarial neural network (DANN) [Wang et al., ICASSP 2018]



Speaker Recognition (DANN)

• Recognition results of domain mismatched conditions

Table 16: Performance of DAT and the state-of-the-art methods.

Systems#	Adaptation	EER%	DCF10	DCF08
	Methods		[21]	
1	—	9.35	0.724	0.520
2	<u> </u>	5.66	0.633	0.427
3	Interpolated [6] [12]	6.55	0.652	0.454
4	IDV [9] [12]	6.15	0.676	0.476
5	DICN [11] [12]	4.99	0.623	0.416
6	DAE [22] [12]	4.81	0.610	0.398
7	AEDA [12]	4.50	0.589	0.362
8	DAT	3.73	0.541	0.335

The DAT approach outperforms other methods with achieving lowest EER and DCF scores.

Outline of Part II

Speech Signal Generation

- Speech enhancement
- Postfilter, speech synthesis, voice conversion

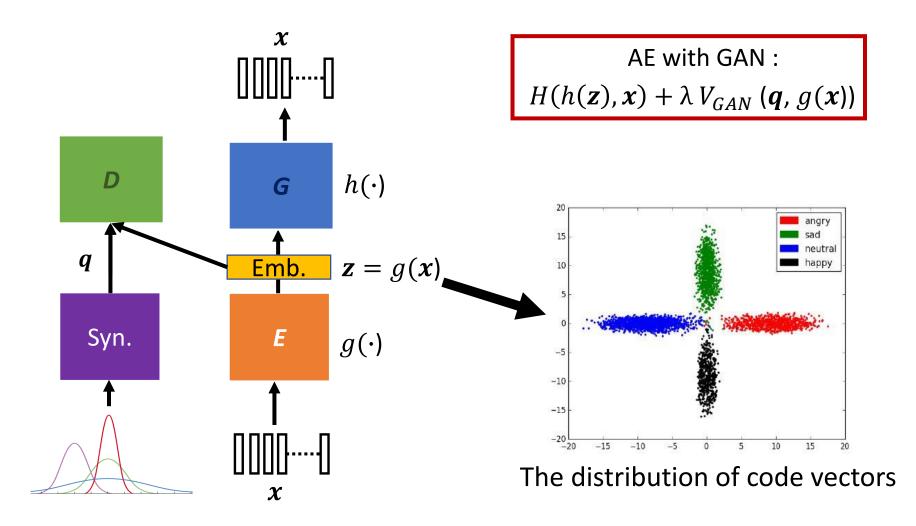
Speech Signal Recognition

- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

Conclusion

Emotion Recognition

• Adversarial AE for emotion recognition (AAE-ER) [Sahu et al., Interspeech 2017]



Emotion Recognition (AAE-ER)

• Recognition results of domain mismatched conditions:

OpenSmile Code LDA PCA Autofeatures encoder vectors (1582-D) (2-D)(100-D)(2-D)(2-D)**UAR** (%) 57.88 53.92 56.38 48.67 43.12 x 0000----0 Table 18: Class in real and synthesized features. **VAR** (%) $h(\cdot)$ G 25.00Original Emb. Training S 33.75 Syn. $g(\cdot)$ data 57.88 58.38 0000----0 tapoints

Table 17: Classification results on different systems.

AAE alone could not yield performance improvements.
 Using synthetic data from AAE can yield higher UAR.

Outline of Part II

Speech Signal Generation

- Speech enhancement
- Postfilter, speech synthesis, voice conversion

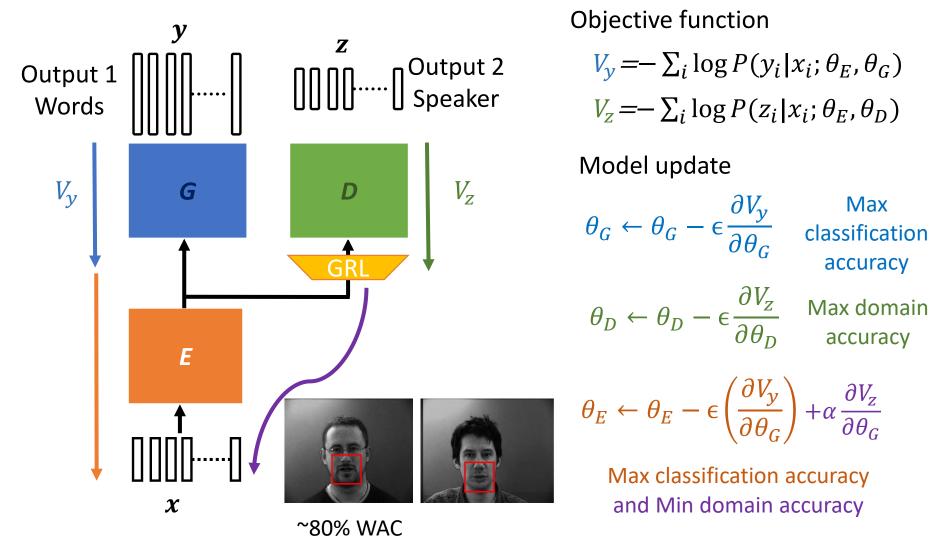
Speech Signal Recognition

- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

Conclusion

Lip-reading

• Domain adversarial training for lip-reading (DAT-LR) [Wand et al., arXiv 2017]



Lip-reading (DAT-LR)

• Recognition results of speaker mismatched conditions

Adversarial Training on	Number of training spk	Target Test acc.	Relative Improvement	p-value
	1	18.7%		-
None	4	39.4%	-	8 <u>2</u> 9
	8	46.5%	-	-
All Target Sequences	1	25.4%	35.8%	0.0030*
	4	43.6%	10.7%	0.0261*
	8	49.3%	6.0%	0.0266*
50 Torre at	1	24.1%	28.9%	0.0045*
50 Target Sequences	4	41.5%	5.3%	0.1367
	8	47.0%	1.1%	0.3555

Table 19: Performance of DAT and the baseline.

The DAT approach notably enhances the recognition accuracies in different conditions.

Outline of Part II

Speech Signal Generation

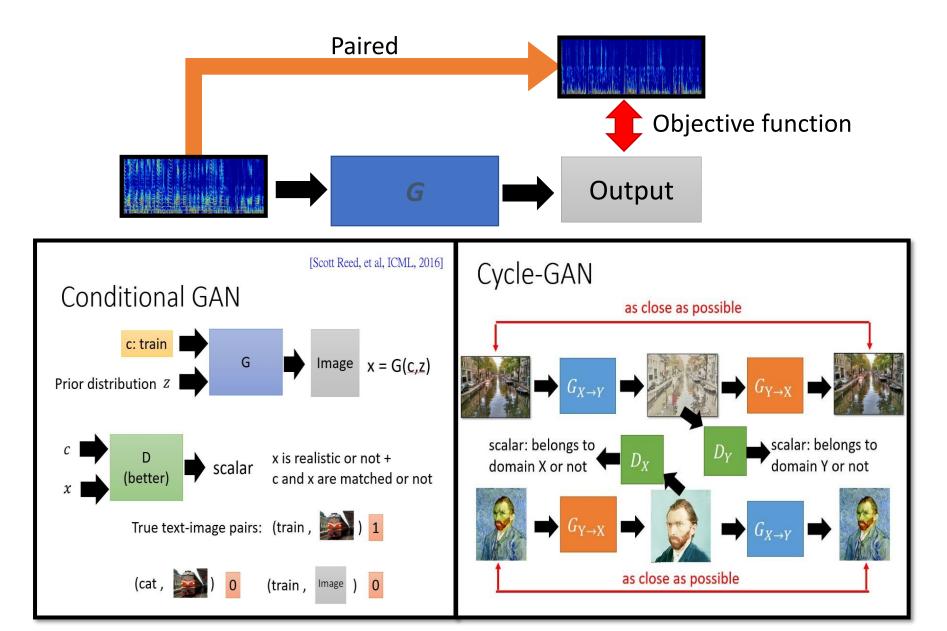
- Speech enhancement
- Postfilter, speech synthesis, voice conversion

Speech Signal Recognition

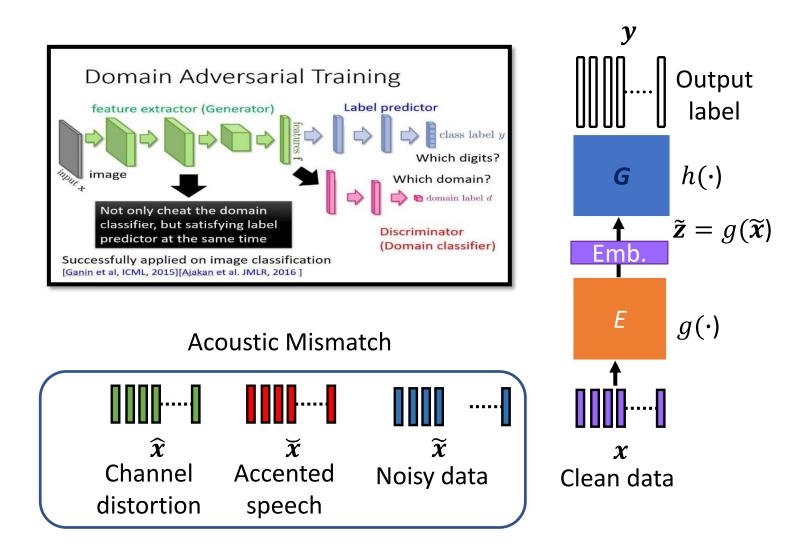
- Speech recognition
- Speaker recognition
- Speech emotion recognition
- Lip reading

Conclusion

Speech Signal Generation (Regression Task)



Speech, Speaker, Emotion Recognition and Lip-reading (Classification Task)



More GANs in Speech

Diagnosis of autism spectrum

Jun Deng, Nicholas Cummins, Maximilian Schmitt, Kun Qian, Fabien Ringeval, and Björn Schuller, Speech-based Diagnosis of Autism Spectrum Condition by Generative Adversarial Network Representations, ACM DH, 2017.

Emotion recognition

Jonathan Chang, and Stefan Scherer, Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks, ICASSP, 2017.

Robust ASR

Dmitriy Serdyuk, Kartik Audhkhasi, Philémon Brakel, Bhuvana Ramabhadran, Samuel Thomas, and Yoshua Bengio, Invariant Representations for Noisy Speech Recognition, arXiv, 2016.

Speaker verification

Hong Yu, Zheng-Hua Tan, Zhanyu Ma, and Jun Guo, Adversarial Network Bottleneck Features for Noise Robust Speaker Verification, arXiv, 2017.

Speech enhancement (conventional methods)

- Yuxuan Wang and Deliang Wang, Cocktail Party Processing via Structured Prediction, NIPS 2012.
- Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, An Experimental Study on Speech Enhancement Based on Deep Neural Networks," IEEE SPL, 2014.
- Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, A Regression Approach to Speech Enhancement Based on Deep Neural Networks, IEEE/ACM TASLP, 2015.
- Xugang Lu, Yu Tsao, Shigeki Matsuda, Chiori Hori, Speech Enhancement Based on Deep Denoising Autoencoder, Interspeech 2012.
- Zhuo Chen, Shinji Watanabe, Hakan Erdogan, John R. Hershey, Integration of Speech Enhancement and Recognition Using Long-short term Memory Recurrent Neural Network, Interspeech 2015.
- Felix Weninger, Hakan Erdogan, Shinji Watanabe, Emmanuel Vincent, Jonathan Le Roux, John R. Hershey, and Bjorn Schuller, Speech Enhancement with LSTM Recurrent Neural Networks and Its Application to Noise-robust ASR, LVA/ICA, 2015.
- Szu-Wei Fu, Yu Tsao, and Xugang Lu, SNR-aware Convolutional Neural Network Modeling for Speech Enhancement, Interspeech, 2016.
- Szu-Wei Fu, Yu Tsao, Xugang Lu, and Hisashi Kawai, End-to-end Waveform Utterance Enhancement for Direct Evaluation Metrics Optimization by Fully Convolutional Neural Networks, arXiv, IEEE/ACM TASLP, 2018.

Speech enhancement (GAN-based methods)

- Pascual Santiago, Bonafonte Antonio, and Serra Joan, SEGAN: Speech Enhancement Generative Adversarial Network, Interspeech, 2017.
- Michelsanti Daniel, and Zheng-Hua Tan, Conditional Generative Adversarial Networks for Speech Enhancement and Noise-robust Speaker Verification, Interspeech, 2017.
- Donahue Chris, Li Bo, and Prabhavalkar Rohit, Exploring Speech Enhancement with Generative Adversarial Networks for Robust Speech Recognition, ICASPP, 2018.
- Higuchi Takuya, Kinoshita Keisuke, Delcroix Marc, and Nakatani Tomohiro, Adversarial Training for Data-driven Speech Enhancement without Parallel Corpus, ASRU, 2017.

Postfilter (conventional methods)

- Toda Tomoki, and Tokuda Keiichi, A Speech Parameter Generation Algorithm Considering Global Variance for HMM-based Speech Synthesis, IEICE Trans. Inf. Syst., 2007.
- Sil'en Hanna, Helander Elina, Nurminen Jani, and Gabbouj Moncef, Ways to Implement Global Variance in Statistical Speech Synthesis, Interspeech, 2012.
- Takamichi Shinnosuke, Toda Tomoki, Neubig Graham, Sakti Sakriani, and Nakamura Satoshi, A Postfilter to Modify the Modulation Spectrum in HMM-based Speech Synthesis, ICASSP, 2014.
- Ling-Hui Chen, Tuomo Raitio, Cassia Valentini-Botinhao, Junichi Yamagishi, and Zhen-Hua Ling, DNN-based Stochastic Postfilter for HMM-based Speech Synthesis, Interspeech, 2014.
- Ling-Hui Chen, Tuomo Raitio, Cassia Valentini-Botinhao, Zhen-Hua Ling, and Junichi Yamagishi, A Deep Generative Architecture for Postfiltering in Statistical Parametric Speech Synthesis, IEEE/ACM TASLP, 2015.

Postfilter (GAN-based methods)

- Kaneko Takuhiro, Kameoka Hirokazu, Hojo Nobukatsu, Ijima Yusuke, Hiramatsu Kaoru, and Kashino Kunio, Generative Adversarial Network-based Postfilter for Statistical Parametric Speech Synthesis, ICASSP, 2017.
- Kaneko Takuhiro, Takaki Shinji, Kameoka Hirokazu, and Yamagishi Junichi, Generative Adversarial Network-Based Postfilter for STFT Spectrograms, Interspeech, 2017.
- Saito Yuki, Takamichi Shinnosuke, and Saruwatari Hiroshi, Training Algorithm to Deceive Anti-spoofing Verification for DNN-based Speech Synthesis, ICASSP, 2017.
- Saito Yuki, Takamichi Shinnosuke, Saruwatari Hiroshi, Saito Yuki, Takamichi Shinnosuke, and Saruwatari Hiroshi, Statistical Parametric Speech Synthesis Incorporating Generative Adversarial Networks, IEEE/ACM TASLP, 2018.
- Bajibabu Bollepalli, Lauri Juvela, and Alku Paavo, Generative Adversarial Network-based Glottal Waveform Model for Statistical Parametric Speech Synthesis, Interspeech, 2017.
- Yang Shan, Xie Lei, Chen Xiao, Lou Xiaoyan, Zhu Xuan, Huang Dongyan, and Li Haizhou, Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under a Multi-task Learning Framework, ASRU, 2017.

VC (conventional methods)

- Toda Tomoki, Black Alan W, and Tokuda Keiichi, Voice Conversion Based on Maximum Likelihood Estimation of Spectral Parameter Trajectory, IEEE/ACM TASLP, 2007.
- Ling-Hui Chen, Zhen-Hua Ling, Li-Juan Liu, and Li-Rong Dai, Voice Conversion Using Deep Neural Networks with Layer-wise Generative Training, IEEE/ACM TASLP, 2014.
- Srinivas Desai, Alan W Black, B. Yegnanarayana, and Kishore Prahallad, Spectral mapping Using artificial Neural Networks for Voice Conversion, IEEE/ACM TASLP, 2010.
- Nakashika Toru, Takiguchi Tetsuya, Ariki Yasuo, High-order Sequence Modeling Using Speaker-dependent Recurrent Temporal Restricted Boltzmann Machines for Voice Conversion, Interspeech, 2014.
- Takuhiro Kaneko, Hirokazu Kameoka, Kaoru Hiramatsu, and Kunio Kashino, Sequence-to-sequence Voice Conversion with Similarity Metric Learned Using Generative Adversarial Networks, Interspeech, 2017.
- Zhizheng Wu, Tuomas Virtanen, Eng-Siong Chng, and Haizhou Li, Exemplar-based Sparse Representation with Residual Compensation for Voice Conversion, IEEE/ACM TASLP, 2014.
- Szu-Wei Fu, Pei-Chun Li, Ying-Hui Lai, Cheng-Chien Yang, Li-Chun Hsieh, and Yu Tsao, Joint Dictionary Learningbased Non-negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery, IEEE TBME, 2017.
- Yi-Chiao Wu, Hsin-Te Hwang, Chin-Cheng Hsu, Yu Tsao, and Hsin-Min Wang, Locally Linear Embedding for Exemplar-based Spectral Conversion, Interspeech, 2016.

VC (GAN-based methods)

- Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang Voice Conversion from Unaligned Corpora Using Variational Autoencoding Wasserstein Generative Adversarial Networks, arXiv, 2017.
- Takuhiro Kaneko, Hirokazu Kameoka, Kaoru Hiramatsu, and Kunio Kashino, Sequence-to-sequence Voice Conversion with Similarity Metric Learned Using Generative Adversarial Networks, Interspeech, 2017.
- Takuhiro Kaneko, and Hirokazu Kameoka. Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks, arXiv, 2017.

ASR

- Yusuke Shinohara, Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech Recognition. Interspeech, 2016.
- Sining Sun, Ching-Feng Yeh, Mei-Yuh Hwang, Mari Ostendorf, and Lei Xie, Domain Adversarial Training for Accented Speech Recognition, ICASSP, 2018
- Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara, Cross-domain Speech Recognition Using Nonparallel Corpora with Cycle-consistent Adversarial Networks, ASRU, 2017.
- Anuroop Sriram, Heewoo Jun, Yashesh Gaur, and Sanjeev Satheesh, Robust Speech Recognition Using Generative Adversarial Networks, arXiv, 2017.

Speaker recognition

• Qing Wang, Wei Rao, Sining Sun, Lei Xie, Eng Siong Chng, and Haizhou Li, Unsupervised Domain Adaptation via Domain Adversarial Training for Speaker Recognition, ICASSP, 2018.

Emotion recognition

• Saurabh Sahu, Rahul Gupta, Ganesh Sivaraman, Wael AbdAlmageed, and Carol Espy-Wilson, Adversarial Autoencoders for Speech Based Emotion Recognition. Interspeech, 2017.

Lipreading

• Michael Wand, and Jürgen Schmidhuber, Improving Speaker-Independent Lipreading with Domain-Adversarial Training, arXiv, 2017.

GANs in ICASSP 2018

- Saurabh Sahu, Rahul Gupta, Ganesh Sivaraman, Carol Espy-Wilson, Smoothing Model Predictions using Adversarial Training Procedures for Speech Based Emotion Recognition
- Fuming Fang, Junichi Yamagishi, Isao Echizen, Jaime Lorenzo-Trueba, High-quality Nonparallel Voice Conversion Based on Cycle-consistent Adversarial Network
- Lauri Juvela, Bajibabu Bollepalli, Xin Wang, Hirokazu Kameoka, Manu Airaksinen, Junichi Yamagishi, Paavo Alku, Speech Waveform Synthesis from MFCC Sequences with Generative Adversarial Networks
- Zhong Meng, Jinyu Li, Yifan Gong, Biing-Hwang (Fred) Juang, Adversarial Teacher-Student Learning for Unsupervised Domain Adaptation
- Zhong Meng, Jinyu Li, Zhuo Chen, Yong Zhao, Vadim Mazalov, Yifan Gong, Biing-Hwang (Fred) Juang, Speaker-Invariant Training via Adversarial Learning
- Sen Li, Stephane Villette, Pravin Ramadas, Daniel Sinder, Speech Bandwidth Extension using Generative Adversarial Networks
- Qing Wang, Wei Rao, Sining Sun, Lei Xie, Eng Siong Chng, Haizhou Li, Unsupervised Domain Adaptation via Domain Adversarial Training for Speaker Recognition
- Hu Hu, Tian Tan, Yanmin Qian, Generative Adversarial Networks Based Data Augmentation for Noise Robust Speech Recognition
- Yuki Saito, Shinnosuke Takamichi, Hiroshi Saruwatari, Text-to-speech Synthesis using STFT Spectra Based on Low-/multi-resolution Generative Adversarial Networks
- Jiangyan Yi, Jianhua Tao, Zhengqi Wen, Ye Bai, Adversarial Multilingual Training for Low-resource Speech Recognition
- Meet H. Soni, Neil Shah, Hemant A. Patil, Time-frequency Masking-based Speech Enhancement using Generative Adversarial Network
- Taira Tsuchiya, Naohiro Tawara, Tetsuji Ogawa, Tetsunori Kobayashi, Speaker Invariant Feature Extraction for Zeroresource Languages with Adversarial Learning

GANs in ICASSP 2018

- Jing Han, Zixing Zhang, Zhao Ren, Fabien Ringeval, Bjoern Schuller, Towards Conditional Adversarial Training for Predicting Emotions from Speech
- Chenxing Li, Lei Zhu, Shuang Xu, Peng Gao, Bo Xu, CBLDNN-based Speaker-independent Speech Separation via Generative Adversarial Training
- Anuroop Sriram, Heewoo Jun, Yashesh Gaur, Sanjeev Satheesh, Robust Speech Recognition using Generative Adversarial Networks
- Cem Subakan, Paris Smaragdis, Generative Adversarial Source Separation,
- Ashutosh Pandey, Deliang Wang, On Adversarial Training and Loss Functions for Speech Enhancement
- Bin Liu, Shuai Nie, Yaping Zhang, Dengfeng Ke, Shan Liang, Wenju Liu, Boosting Noise Robustness of Acoustic Model via Deep Adversarial Training
- Yang Gao, Rita Singh, Bhiksha Raj, Voice Impersonation using Generative Adversarial Networks
- Aditay Tripathi, Aanchan Mohan, Saket Anand, Maneesh Singh, Adversarial Learning of Raw Speech Features for Domain Invariant Speech Recognition
- Zhe-Cheng Fan, Yen-Lin Lai, Jyh-Shing Jang, SVSGAN: Singing Voice Separation via Generative Adversarial Network
- Santiago Pascual, Maruchan Park, Joan Serra, Antonio Bonafonte, Kang-Hun Ahn, Language and Noise Transfer in Speech Enhancement Generative Adversarial Network

A promising research direction and still has room for further improvements in the speech signal processing domain

Thank You Very Much

Tsao, Yu Ph.D. yu.tsao@citi.sinica.edu.tw

https://www.citi.sinica.edu.tw/pages/yu.tsao/contact_zh.html

Generative Adversarial Network and its Applications to Signal Processing

and Natural Language Processing

Part III: Natural Language Processing

Outline of Part III

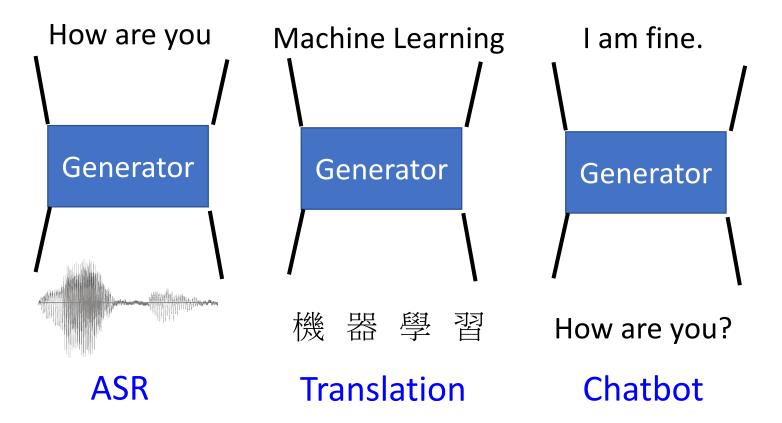
Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

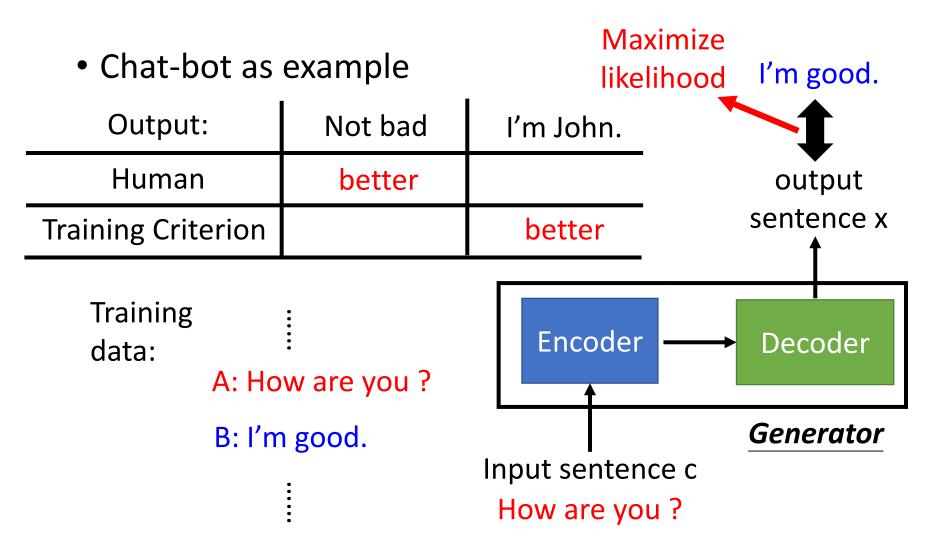
- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Conditional Sequence Generation



The generator is a typical seq2seq model. With GAN, you can train seq2seq model in another way.

Review: Sequence-to-sequence



Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

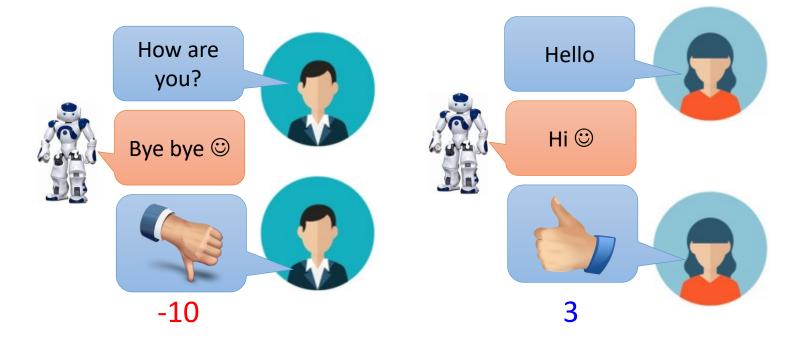
Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Introduction

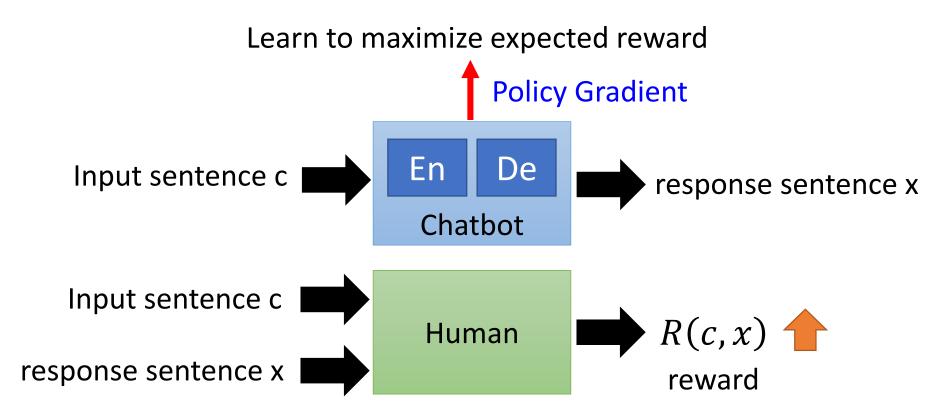
https://image.freepik.com/free-vector/varietyof-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/varietyof-human-avatars_766615.htm

• Machine obtains feedback from user



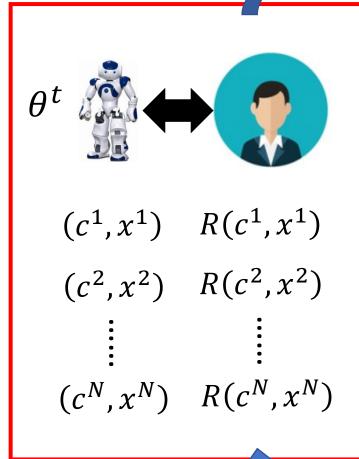
Chat-bot learns to maximize the *expected reward*

Maximizing Expected Reward



[Li, et al., EMNLP, 2016]

Policy Gradient - Implemenation



$$\theta^{t+1} \leftarrow \theta^t + \eta \nabla \overline{R}_{\theta^t}$$

$$\frac{1}{N} \sum_{i=1}^N R(c^i, x^i) \nabla \log P_{\theta^t}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is positive}$$

$$\text{Updating } \theta \text{ to increase } P_{\theta}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is negative}$$

$$\text{Updating } \theta \text{ to decrease } P_{\theta}(x^i | c^i)$$

Comparison		
	Maximum Likelihood	Reinforcement Learning
Objective Function	$\frac{1}{N} \sum_{i=1}^{N} log P_{\theta}(\hat{x}^{i} c^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(c^{i}, x^{i}) log P_{\theta}(x^{i} c^{i})$
Gradient	$\frac{1}{N} \sum_{i=1}^{N} \nabla log P_{\theta}(\hat{x}^{i} c^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(c^{i}, x^{i}) \nabla log P_{\theta}(x^{i} c^{i})$
Training Data	$\{(c^{1}, \hat{x}^{1}), \dots, (c^{N}, \hat{x}^{N})\}$ $R(c^{i}, \hat{x}^{i}) = 1$	$\{(c^1, x^1),, (c^N, x^N)\}$ obtained from interaction weighted by $R(c^i, x^i)$

Outline of Part III

Improving Supervised Seq-to-seq Model

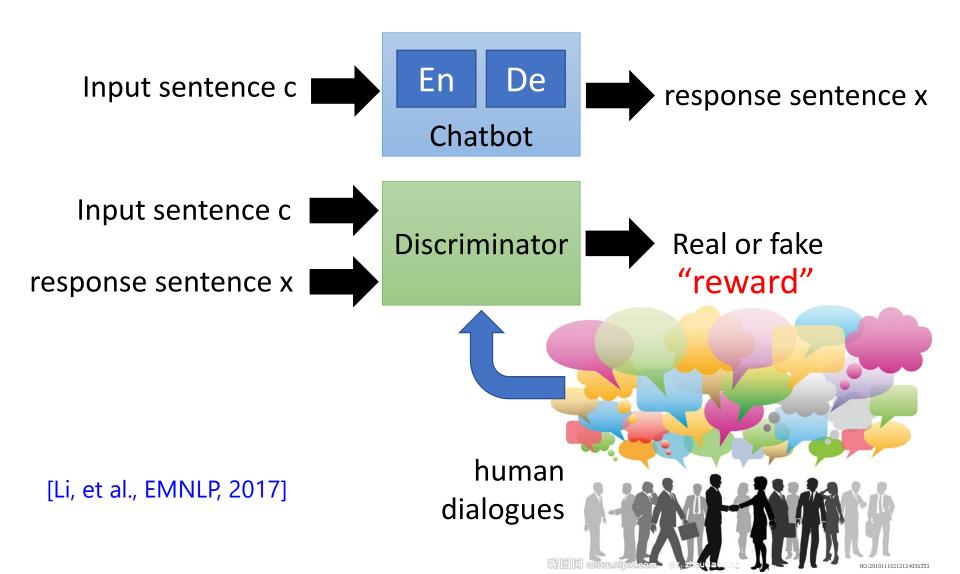
- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

http://www.nipic.com/show/3/83/3936650kd7476069.html

Conditional GAN

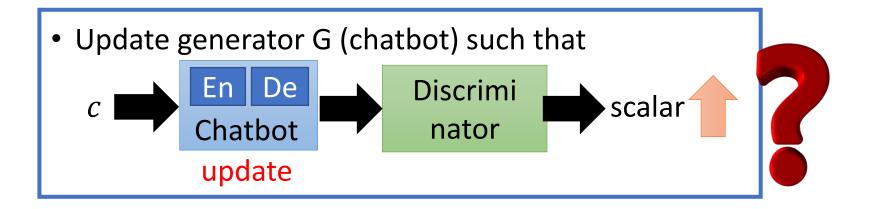


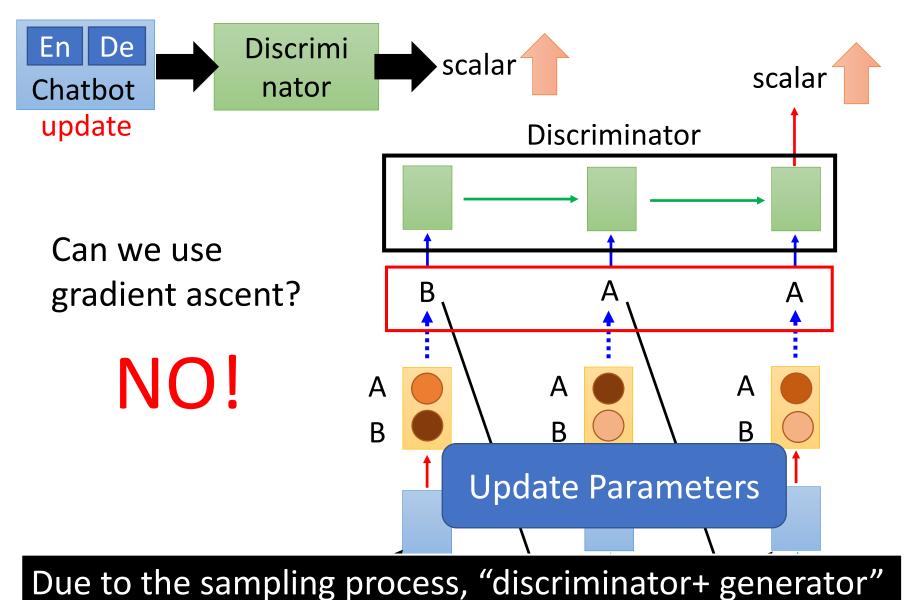
Algorithm

Training data:

Pairs of conditional input c and response x

- Initialize generator G (chatbot) and discriminator D
- In each iteration:
 - Sample input c and response x from training set
 - Sample input c' from training set, and generate response \tilde{x} by G(c')
 - Update D to increase D(c, x) and decrease $D(c', \tilde{x})$





В

is not differentiable

Three Categories of Solutions

Gumbel-softmax

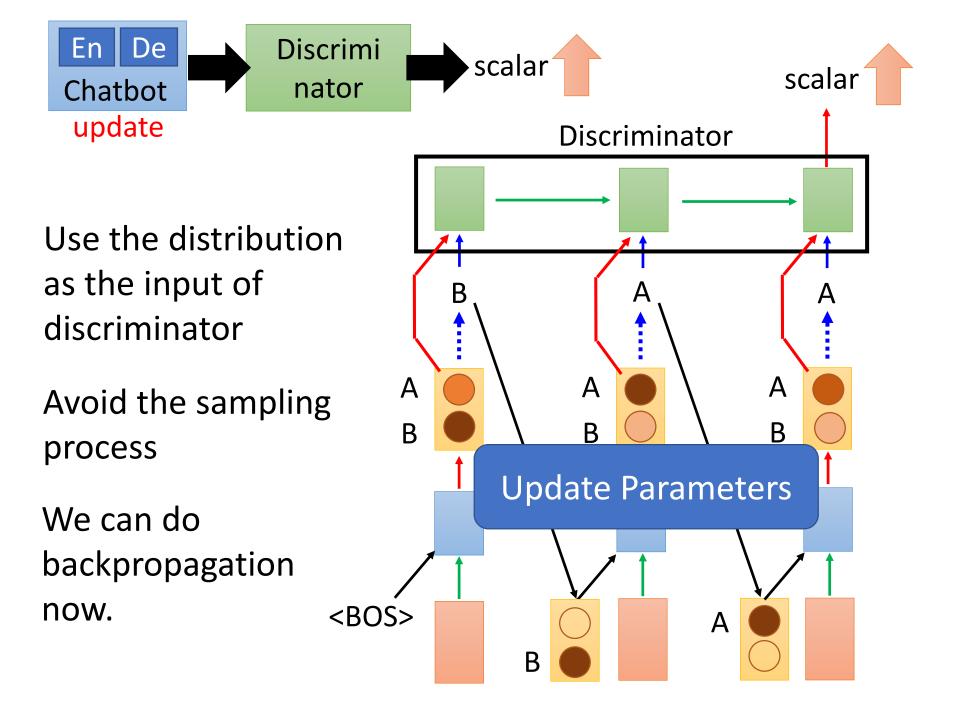
• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

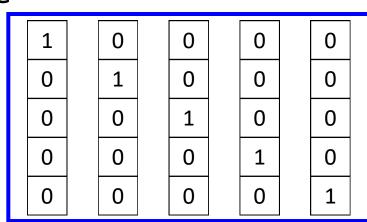
"Reinforcement Learning"

[Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]



What is the problem?

Real sentence



Generated

Discriminator can immediately find the difference.

Can never be 1-of-N

WGAN is helpful

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

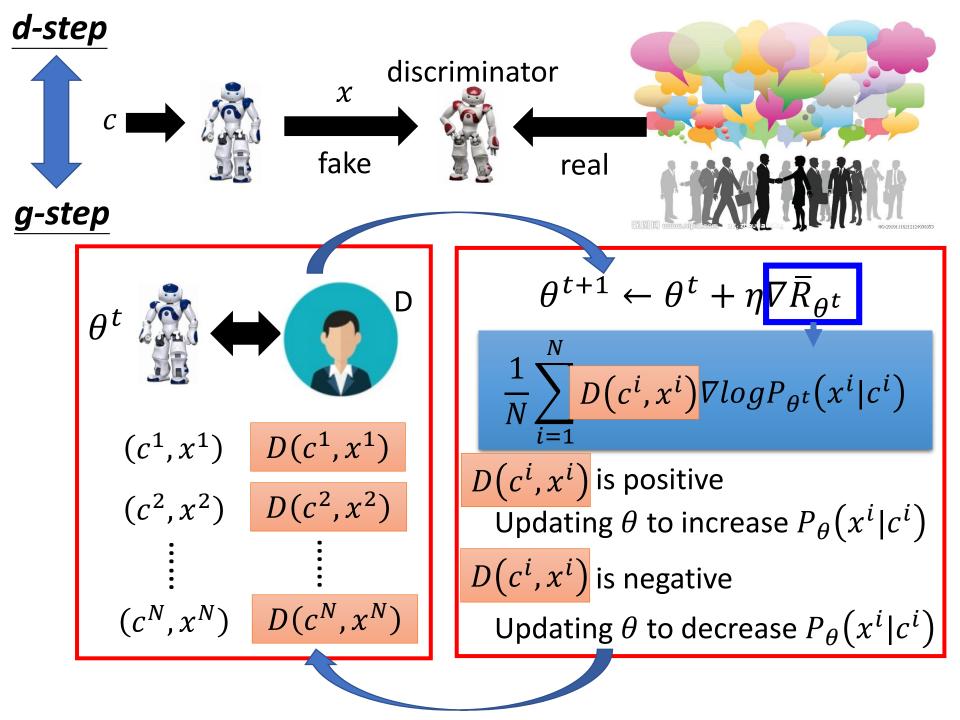
[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

[Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

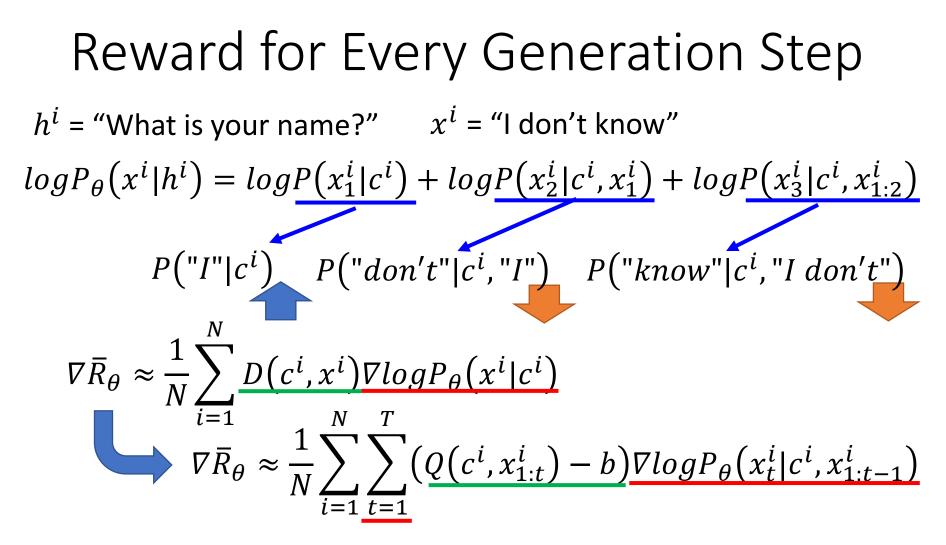
Reinforcement Learning?

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward
 - Using the formulation of policy gradient, replace reward R(c, x) with discriminator output D(c, x)
- Different from typical RL
 - The discriminator would update



Reward for Every Generation Step $\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} D(c^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | c^{i})$

 $c^{i} = \text{``What is your name?''} \quad D(c^{i}, x^{i}) \text{ is negative}$ $x^{i} = \text{``I don't know''} \quad Update \ \theta \text{ to decrease } \log P_{\theta}(x^{i}|c^{i})$ $log P_{\theta}(x^{i}|c^{i}) = log P(x_{1}^{i}|c^{i}) + log P(x_{2}^{i}|c^{i}, x_{1}^{i}) + log P(x_{3}^{i}|c^{i}, x_{1:2}^{i})$ $P(\text{``I''}|c^{i}) = P(x_{1}^{i}|c^{i}) + log P(x_{2}^{i}|c^{i}, x_{1}^{i}) + log P(x_{3}^{i}|c^{i}, x_{1:2}^{i})$



Method 1. Monte Carlo (MC) Search [Yu, et al., AAAI, 2017] Method 2. Discriminator For Partially Decoded Sequences [Li, et al., EMNLP, 2017]

Experimental Results

Input	We've got to look for another route.
MLE	I'm sorry.
GAN	You're not going to be here for a while.
Input	You can save him by talking.
MLE	I don't know.
GAN	You know what's going on in there, you know what I mean?

- MLE frequently generates "I'm sorry", "I don't know", etc. (corresponding to fuzzy images?)
- GAN generates longer and more complex responses (however, no strong evidence shows that they are better)

Find more comparison in the survey papers.

[Lu, et al., arXiv, 2018][Zhu, et al., arXiv, 2018]

More Applications

- Supervised machine translation [Wu, et al., arXiv 2017][Yang, et al., arXiv 2017]
- Supervised abstractive summarization [Liu, et al., AAAI 2018]
- Image/video caption generation [Rakshith Shetty, et al., ICCV 2017][Liang, et al., arXiv 2017]

If you are using seq2seq models, consider to improve them by GAN.

Outline of Part III

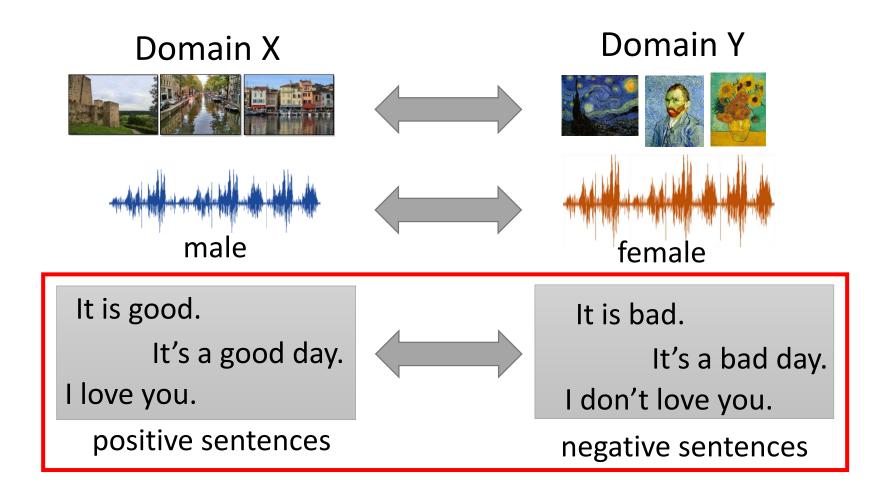
Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

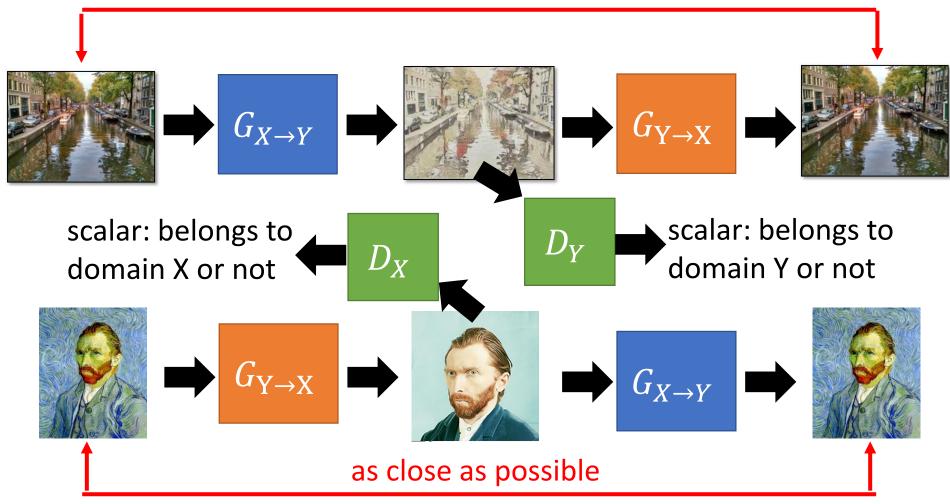
- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Text Style Transfer



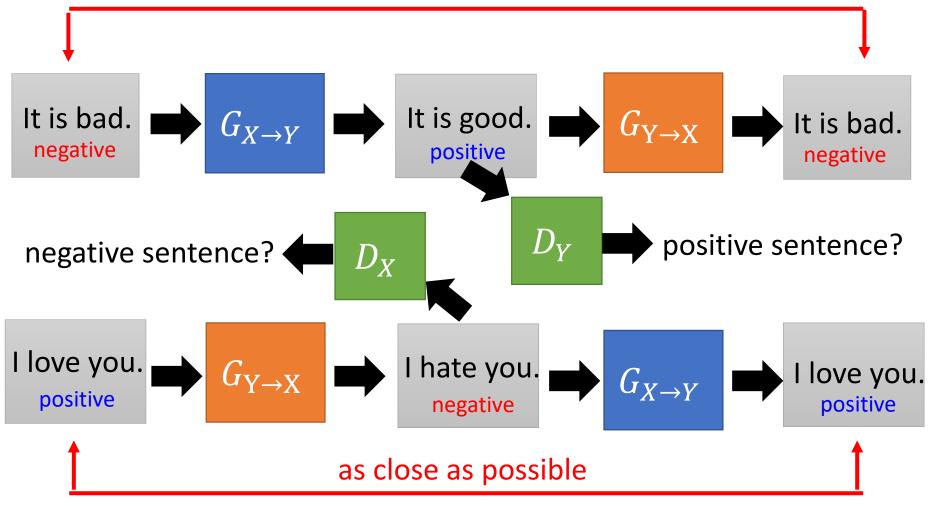
Direct Transformation

as close as possible



Direct Transformation

as close as possible

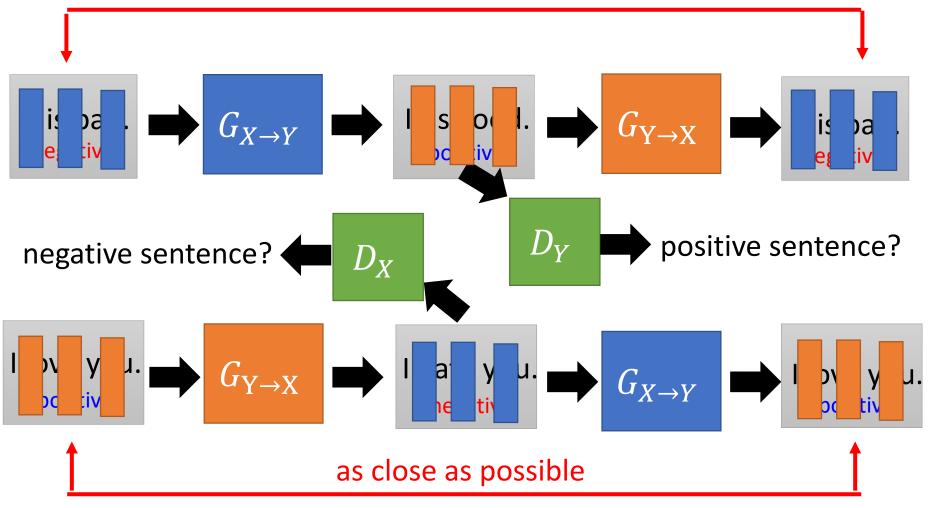


Direct Transformation

Discrete?

Word embedding [Lee, et al., ICASSP, 2018]

as close as possible



 Negative sentence to positive sentence: it's a crappy day \rightarrow it's a great day i wish you could be here \rightarrow you could be here it's not a good idea \rightarrow it's good idea i miss you \rightarrow i love you i don't love you \rightarrow i love you i can't do that \rightarrow i can do that i feel so sad \rightarrow i happy it's a bad day \rightarrow it's a good day it's a dummy day \rightarrow it's a great day sorry for doing such a horrible thing \rightarrow thanks for doing a great thing my doggy is sick \rightarrow my doggy is my doggy my little doggy is sick \rightarrow my little doggy is my little doggy

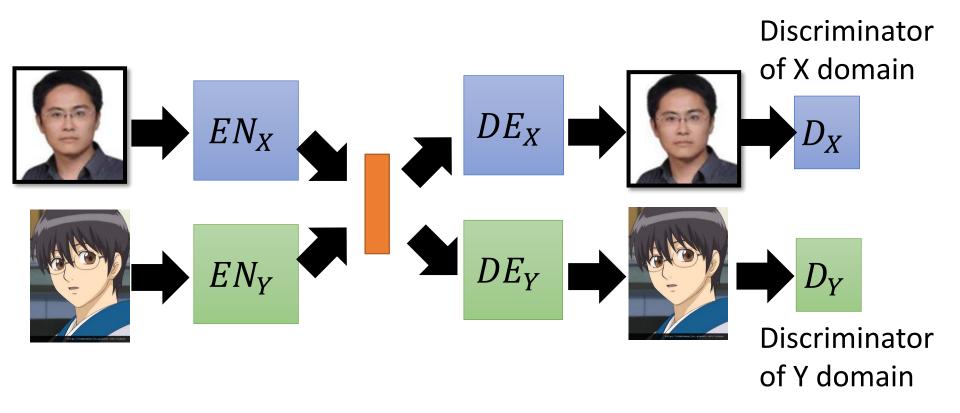
Title: SCALABLE SENTIMENT FOR SEQUENCE-TO-SEQUENCE CHATBOT RESPONSE WITH PERFORMANCE ANALYSIS

Session: Dialog Systems and Applications

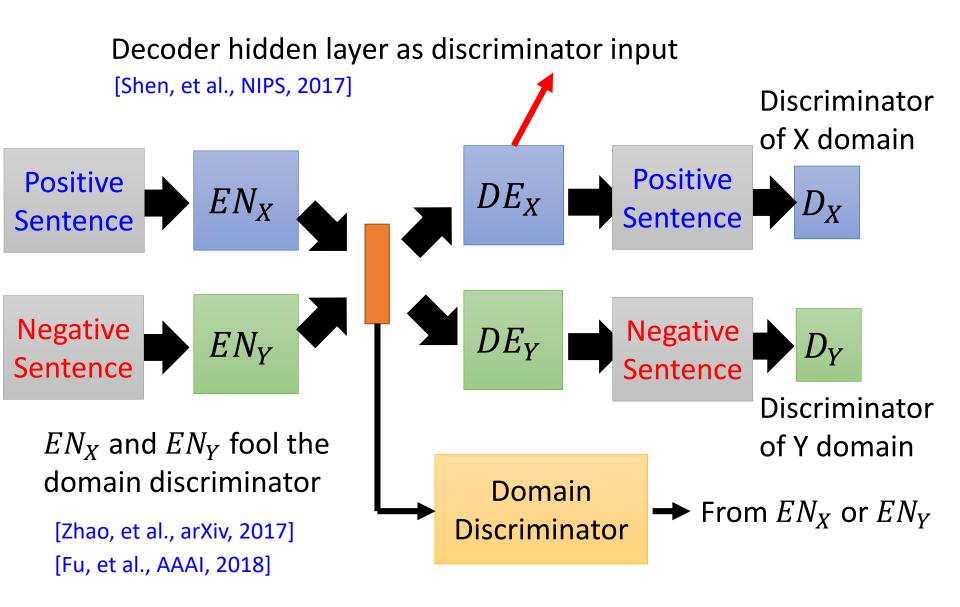
Time: Wednesday, April 18, 08:30 - 10:30

Authors: Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-Shan Lee

Projection to Common Space



Projection to Common Space



Outline of Part III

Improving Supervised Seq-to-seq Model

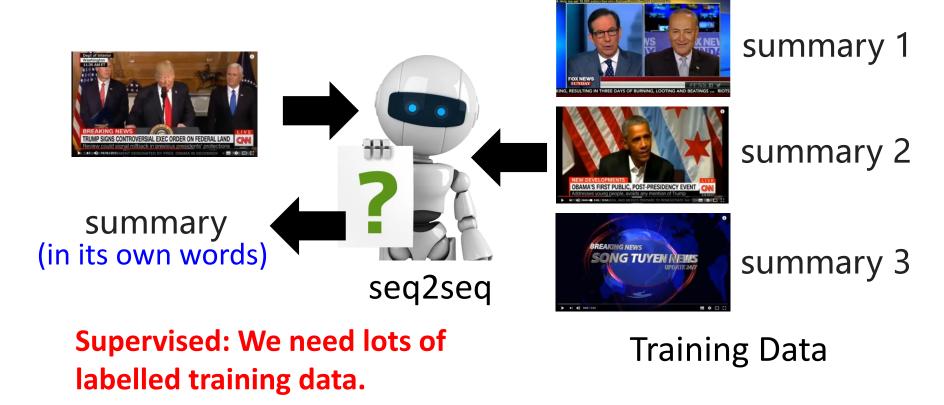
- RL (human feedback)
- GAN (discriminator feedback)

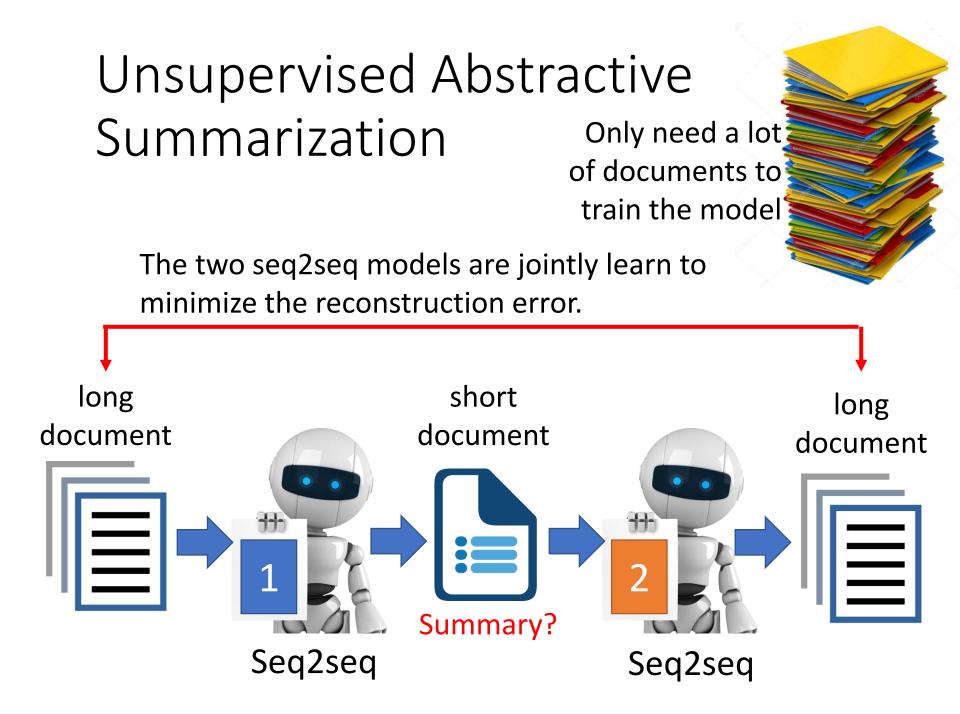
Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Abstractive Summarization

 Now machine can do abstractive summary by seq2seq (write summaries in its own words)

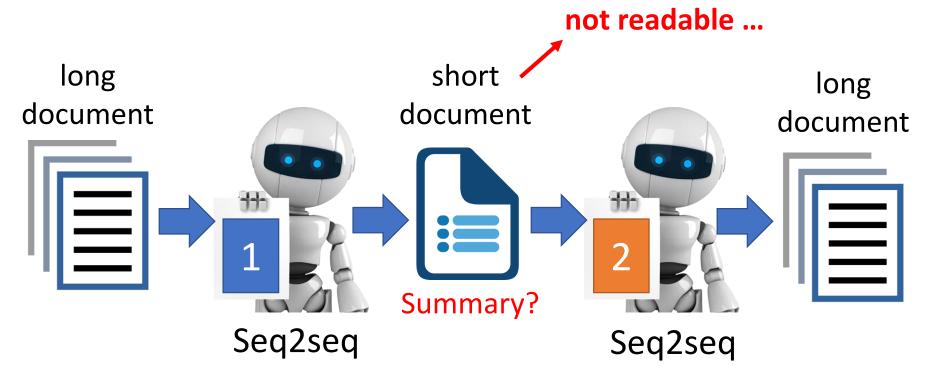


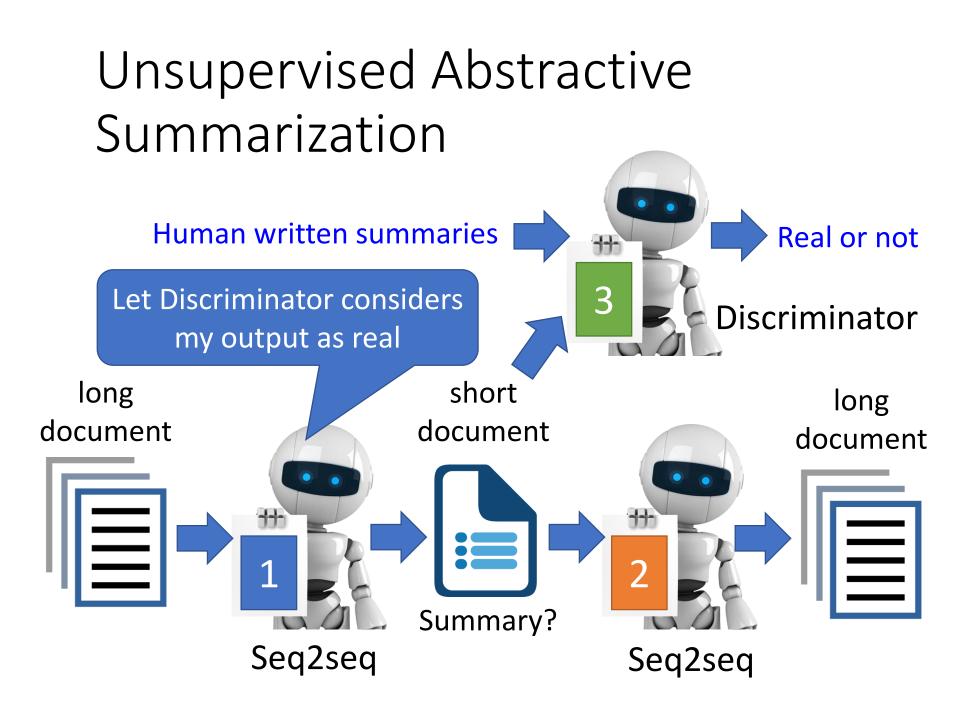


Unsupervised Abstractive Summarization

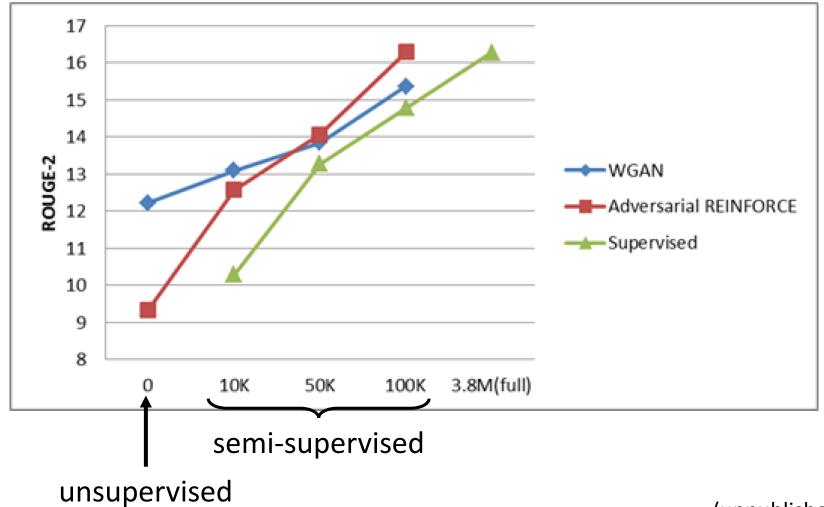
This is a *seq2seq2seq auto-encoder*.

Using a sequence of words as latent representation. Policy gradient is used.





Semi-supervised Learning



(unpublished)

Outline of Part III

Improving Supervised Seq-to-seq Model

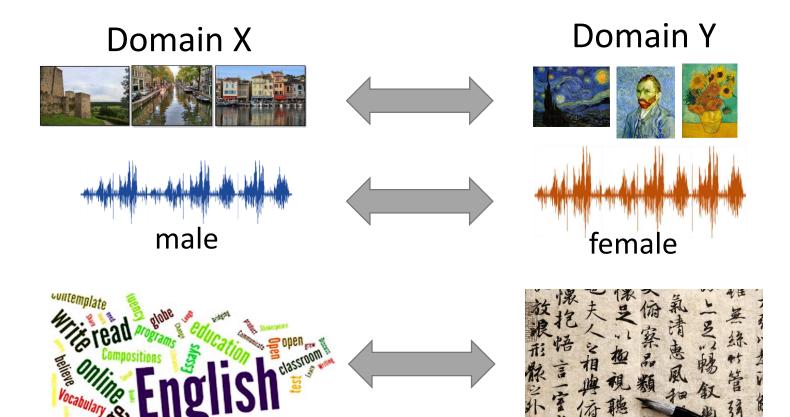
- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

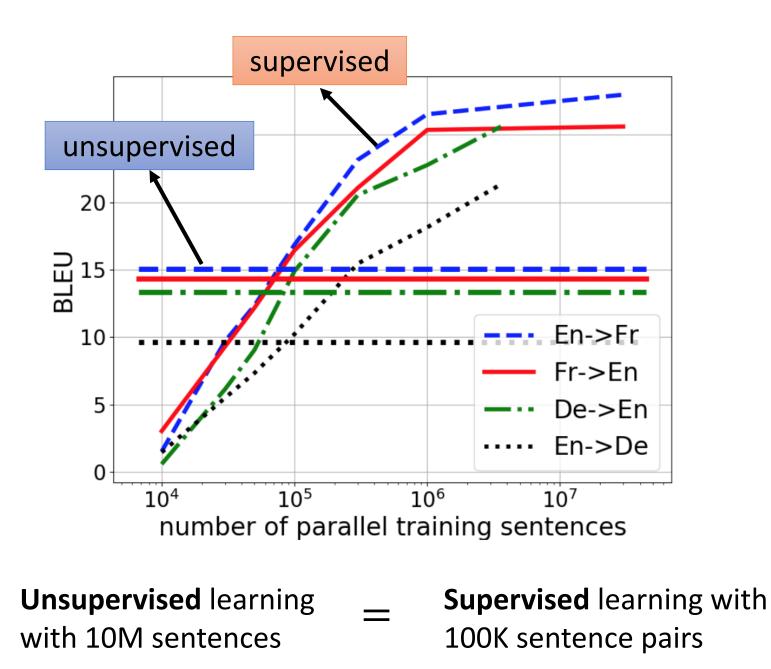
- Text Style Transfer
- Unsupervised Abstractive Summarization

Unsupervised Translation

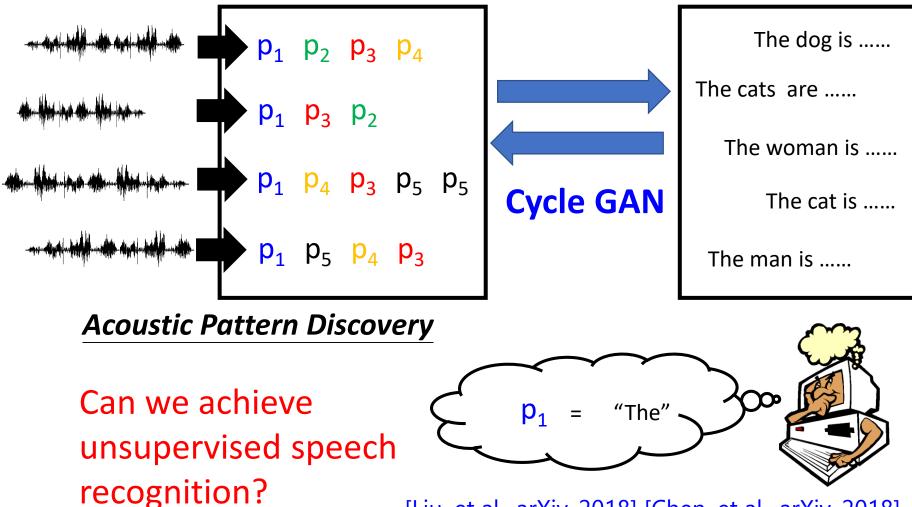
Unsupervised Machine Translation



[Alexis Conneau, et al., ICLR, 2018] [Guillaume Lample, et al., ICLR, 2018]



Unsupervised Speech Recognition

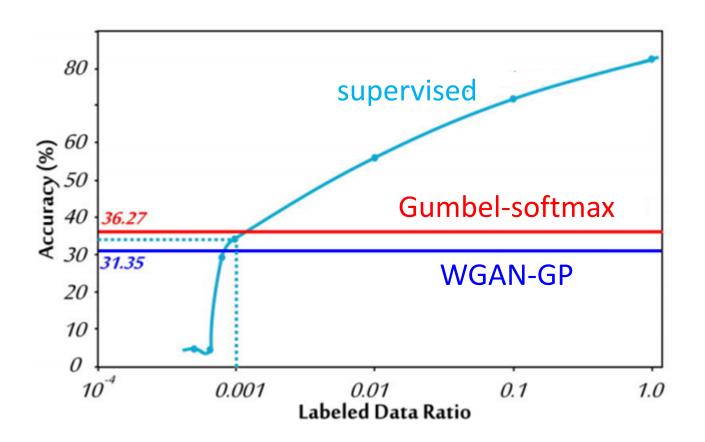


[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 2018]

Unsupervised Speech Recognition

• Phoneme recognition

Audio: TIMIT Text: WMT



Concluding Remarks

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

To Learn More ...

You can learn more from the YouTube Channel

https://www.youtube.com/playlist?list=PLJV_el3uVTsMd2G9ZjcpJn1YfnM9wVOBf

(in Mandarin)

Conditional Sequence Generation

- Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, Deep Reinforcement Learning for Dialogue Generation, EMNLP, 2016
- Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, Adversarial Learning for Neural Dialogue Generation, EMNLP, 2017
- Matt J. Kusner, José Miguel Hernández-Lobato, GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution, arXiv 2016
- Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio, Maximum-Likelihood Augmented Discrete Generative Adversarial Networks, arXiv 2017
- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI 2017

Conditional Sequence Generation

- Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, Aaron Courville, Adversarial Generation of Natural Language, arXiv, 2017
- Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolf, Language Generation with Recurrent Generative Adversarial Networks without Pretraining, ICML workshop, 2017
- Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun, Xiaolong Wang, Zhuoran Wang, Chao Qi, Neural Response Generation via GAN with an Approximate Embedding Layer, EMNLP, 2017
- Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio, Professor Forcing: A New Algorithm for Training Recurrent Networks, NIPS, 2016
- Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, Lawrence Carin, Adversarial Feature Matching for Text Generation, ICML, 2017
- Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang, Long Text Generation via Adversarial Training with Leaked Information, AAAI, 2018
- Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, Adversarial Ranking for Language Generation, NIPS, 2017
- William Fedus, Ian Goodfellow, Andrew M. Dai, MaskGAN: Better Text Generation via Filling in the_____, ICLR, 2018

Conditional Sequence Generation

- Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu, Neural Text Generation: Past, Present and Beyond, arXiv, 2018
- Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, Yong Yu, Texygen: A Benchmarking Platform for Text Generation Models, arXiv, 2018
- Zhen Yang, Wei Chen, Feng Wang, Bo Xu, Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets, NAACL, 2018
- Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu, Adversarial Neural Machine Translation, arXiv 2017
- Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, Hongyan Li, Generative Adversarial Network for Abstractive Text Summarization, AAAI 2018
- Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks, Mario Fritz, Bernt Schiele, Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training, ICCV 2017
- Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, Eric P. Xing, Recurrent Topic-Transition GAN for Visual Paragraph Generation, arXiv 2017

Text Style Transfer

- Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, Rui Yan, Style Transfer in Text: Exploration and Evaluation, AAAI, 2018
- Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola, Style Transfer from Non-Parallel Text by Cross-Alignment, NIPS 2017
- Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis, ICASSP, 2018
- Junbo (Jake) Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, Yann LeCun, Adversarially Regularized Autoencoders, arxiv, 2017

Unsupervised Machine Translation

- Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou, Word Translation Without Parallel Data, ICRL 2018
- Guillaume Lample, Ludovic Denoyer, Marc'Aurelio Ranzato, Unsupervised Machine Translation Using Monolingual Corpora Only, ICRL 2018

Unsupervised Speech Recognition

- Da-Rong Liu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Completely Unsupervised Phoneme Recognition by Adversarially Learning Mapping Relationships from Audio Embeddings, arXiv, 2018
- Yi-Chen Chen, Chia-Hao Shen, Sung-Feng Huang, Hung-yi Lee, Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only, arXiv, 2018