Collaborative Target-Localization and Information-based Control in Networks of UAVs

Anna Guerra^{*} Nicola Sparnacci^{*} Davide Dardari^{*} Petar M. Djurić^{**} *DEI, University of Bologna, **ECE, Stony Brook University E-mail contact: anna.guerra3@unibo.it

Constrained navigation

Gradient-based solution: Projection matrix: Activated constraint:

$$\mathbf{u}_{i}^{(k+1)} = -\gamma \mathbf{P} \nabla_{\mathbf{p}_{i}^{(k)}} \operatorname{PEB}\left(\hat{\mathbf{p}}_{Ti}^{(k)}; \mathbf{q}_{i}^{(k)}\right) - \mathbf{N}\left(\mathbf{N}^{\mathsf{T}}\mathbf{N}\right)^{-1} \mathbf{g}$$
$$\mathbf{P} = \mathbf{I} - \mathbf{N}\left(\mathbf{N}^{\mathsf{T}}\mathbf{N}\right)^{-1} \mathbf{N}^{\mathsf{T}} \quad \text{with} \quad \mathbf{N} = \nabla_{\mathbf{p}_{i}^{(k)}}\left(\mathbf{g}\right)$$
$$\mathbf{g} = \tilde{\mathbf{d}}_{i}^{(k)} - d^{*}, \quad \tilde{\mathbf{d}}_{i}^{(k)} = \left\{\tilde{d}_{i}^{(k)}: \tilde{d}_{i}^{(k)} < d^{*}\right\}$$

• We envision an emergency situation (e.g., a fire) in which a team of N UAVs acts as a **distributed wireless sensor network** to track targets (e.g., firemen) inside buildings. The UAV positions are considered a-priori known.

• Each UAV accomplishes the following tasks:

Fuse the collected data to infer the target position and optimize the trajectory;

• In this paper, we focus on the **decentralized control** of UAVs and the assessment of a trade-off between localization accuracy and convergence speed.

Information-seeking control

Goal: Each UAV estimates its own control signals in order to minimize the error in localizing the target and avoiding collisions between UAVs and obstacles.

': UAV distance from other UAVs/target/obstacles \boldsymbol{U} safety distance

Results and conclusions

2D indoor/outdoor scenario:

♦ Blue dots: UAV initial positions; ♦ Black line: UAV trajectory. Success rate:

$$\mathsf{SR}^{(k)} = \frac{\sum_{m,i} \mathbf{1} \left(\mathsf{PEB} \left(\hat{\mathbf{p}}_{\mathsf{T}\,im}^{(k)}; \mathbf{q}_{im}^{(k)} \right) \le \xi^* \right)}{N \, N_{\mathsf{MC}}}$$

 ξ^* : desired PEB value; $\mathbf{1}(\cdot)$: indicator function; $N_{\rm MC}$: Monte Carlo iterations; $d_{\rm hop}$ commun. range; $h_{\rm max}$ maximum number of hops.

 $\mathbf{q}_{i}^{(k)} = \left[\dots, \mathbf{p}_{j}^{(k-h+1)}, \dots \right]^{T}$: locations of all the UAVs as known by the *i*th UAV at time slot k. h is the number of hops between the *i*th and *j*th UAV; $\Rightarrow \hat{\mathbf{p}}_{T_i}^{(k)} = \left[\hat{x}_{T_i}^{(k)}, \hat{y}_{T_i}^{(k)}\right]^T$: estimated target position by the *i*th UAV at time slot *k*.

ization error

UAV control signal: $\mathbf{u}_{i}^{(k+1)} = \left[\left(\mathbf{q}_{i}^{(k+1)} \right)^{*} \right]_{i} - \mathbf{p}_{i}^{(k)}$

<u>Left:</u> Averaged PEB as a function of N with $d_{hop} = 20 \text{ m}$ and $h_{max} = 1$; Right: Success rate vs. N with $d_{hop} = 20 \text{ m}$, $h_{max} = 1$ and $\xi^* = 0.5 \text{ m}$

Left: Averaged PEB vs. d_{hop} with N = 10 and $h_{max} = 1$;

Right: Success rate *vs.* d_{hop} with N = 10, $h_{max} = 1$ and $\xi^* = 3$ m

Conclusions:

An increased number of UAVs translates in a better localization accuracy and improved convergence speed;

 \diamond An increased d_{hop} allows for the collection of more up-to-date measurements, and, hence, improved performance;

 \diamond Passing from $h_{\text{max}} = 1$ to $h_{\text{max}} = 3$ (i.e., collecting more not-updated measurements from UAVs that are further away) does not improve the results.

Averaged PEB vs. h_{max} with $d_{hop} = 20$. Dashed lines refer to the case h_{max} = 3 while continuous lines to h_{max} = 1