Collaborative Target-Localization and Information-based Control in Networks of UAVs

Anna Guerra* Nicola Sparnacci* Davide Dardari* Petar M. Djurić** *DEI, University of Bologna, "*ECE, Stony Brook University
E-mail contact: anna.guerra3@unibo.it

Research context

- We envision an emergency situation (e.g., a fire) in which a team of N UAVs acts as a distributed wireless sensor network to track targets (e.g., firemen) inside buildings. The UAV positions are considered a-priori known.
- Each UAV accomplishes the following tasks:
\diamond Exchange the gathered information only with its closest neighbors (multi-hops);
\diamond Fuse the collected data to infer the target position and optimize the trajectory;
- In this paper, we focus on the decentralized control of UAVs and the assessment of a trade-off between localization accuracy and convergence speed.

Information-seeking control

Goal: Each UAV estimates its own control signals in order to minimize the error in localizing the target and avoiding collisions between UAVs and obstacles.

Problem statement:

$\diamond \mathbf{q}_{i}^{(k)}=\left[\ldots, \mathbf{p}_{j}^{(k-h+1)}, \ldots\right]^{\top}$: locations of all the UAVs as known by the i th UAV at time slot $k . h$ is the number of hops between the i th and j th UAV;
$\diamond \hat{\mathbf{p}}_{T i}^{(k)}=\left[\hat{X}_{T i}^{(k)}, \hat{y}_{T i}^{(k)}\right]^{\top}$: estimated target position by the i th UAV at time slot k.
UAV control signal: $\quad \mathbf{u}_{i}^{(k+1)}=\left[\left(\mathbf{q}_{i}^{(k+1)}\right)^{*}\right]_{i}-\mathbf{p}_{i}^{(k)}$

Position Error Bound

$\operatorname{PEB}\left(\mathbf{p}_{T} ; \mathbf{q}_{i}^{(k)}\right)=\sqrt{\operatorname{tr}\left(\mathbf{J}^{-1}\left(\mathbf{p}_{T} ; \mathbf{q}_{i}^{(k)}\right)\right)} \quad \mathbf{J}\left(\mathbf{p}_{\mathrm{T}} ; \mathbf{q}_{i}^{(k)}\right)=-\mathbb{E}_{\mathbf{z}_{i}^{(k)}}\left\{\nabla_{\mathbf{p}_{\mathrm{T}}}\left[\nabla_{\mathbf{p}_{\mathrm{T}}} \Lambda\left(\mathbf{z}_{i}^{(k)} \mid \mathbf{p}_{\mathrm{T}}\right)\right]^{\top}\right\}$

Log-likelihood function:

$$
\Lambda\left(\mathbf{z}_{i}^{(k)} \mid \mathbf{p}_{T}\right)=\sum_{j=1}^{N} \ln f\left(z_{j}^{(k-h+1)} \mid \mathbf{p}_{T}\right)
$$

UAV-Target range $\mathcal{N}\left(v_{i}^{(k)} ; 0,\left(\sigma_{i}^{(k)}\right)^{2}\right)$
Ranging model: $\left(\sigma_{i}^{(k)}\right)^{2}=\sigma_{0}^{2}\left(d_{i}^{(k)} / d_{0}\right)^{\alpha}+\eta_{i}^{(k)} \sigma_{b}^{2}$ Ranging error © $d_{0} \quad$ Path-loss exp. NLOS bias error

Constrained navigation

Gradient-based solution:
Projection matrix:
Activated constraint:
$\mathbf{u}_{i}^{(k+1)}=-\gamma \mathbf{P} \nabla_{\mathbf{p}_{k}^{(k)}} \operatorname{PEB}\left(\hat{\mathbf{p}}_{i}^{(k)} ; \mathbf{q}_{i}^{(k)}\right)-\mathbf{N}\left(\mathbf{N}^{\top} \mathbf{N}\right)^{-1} \mathbf{g}$
$\mathbf{P}=\mathbf{I}-\mathbf{N}\left(\mathbf{N}^{\top} \mathbf{N}\right)^{-1} \mathbf{N}^{\top} \quad$ with $\quad \mathbf{N}=\nabla_{\mathbf{p}_{i}^{(k)}}(\mathbf{g})$
$\mathbf{g}=\tilde{\mathbf{d}}_{i}^{(k)}-d^{*}, \quad \tilde{\mathbf{d}}_{i}^{(k)}=\left\{\tilde{d}_{i}^{(k)}: \tilde{d}_{i}^{(k)}<d^{*}\right\}$
$\tilde{d}_{i}^{(k)}:$ UAV distance from other UAVs/target//bstacles
d^{*} : safety distance

Results and conclusions

2D indoor/outdoor scenario:
\diamond Blue dots: UAV initial positions
\diamond Green triangle: Target position;
\diamond Gray rectangles: obstacles;
\diamond Black line: UAV trajectory.
Success rate:

$$
\mathrm{SR}^{(k)}=\frac{\sum_{m, i} \mathbf{1}\left(\operatorname{PEB}\left(\hat{\mathbf{p}}_{T m}^{(k)} ; \mathbf{q}_{i m}^{(k)}\right) \leq \xi^{*}\right)}{N N_{\mathrm{MC}}}
$$

$\diamond \xi^{*}$ desired PEB value; $\mathbf{1}(\cdot)$: indicator function; $N_{\text {Mc: }}$: Monte Carlo iterations; $d_{\text {hop }}$ commun. range;
$h_{\text {max }}$ maximum number of hops.

Left: Averaged PEB as a function of N with $d_{\text {hop }}=20 \mathrm{~m}$ and $h_{\max }=1$; Right: Success rate vs. N with $d_{\text {hop }}=20 \mathrm{~m}, h_{\text {max }}=1$ and $\xi^{*}=0.5 \mathrm{~m}$

Time Steps

Left: Averaged PEB vs. $d_{\text {hop }}$ with $N=10$ and $h_{\text {max }}=1$
Right: Success rate vs. $d_{\text {hop }}$ with $N=10, h_{\max }=1$ and $\xi^{*}=3 \mathrm{~m}$

Conclusions:
\diamond An increased number of UAVs translates in a better localization accuracy and improved convergence speed;
\diamond An increased $d_{\text {hop }}$ allows for the collection of more up-to-date measurements, and, hence, improved performance;
\diamond Passing from $h_{\max }=1$ to $h_{\max }=3$ (i.e., collecting more not-updated measurements from UAVs that are further away)
 does not improve the results.

