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Possible Applications of Shape Analysis
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A Simplified Shape Classification Problem
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Outline: Shape Classification Based on Shape Distances
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@ Requires a notion of distance between shapes
— we use a well-known elastic shape distance

@ A Classification method

@ An efficient method to compute shape distances
e An algorithm that computes the distances
— our contribution
o Experiments on a bigger dataset

A Riemannian Approach for Computing Geodesics in Elastic Shape Analysis 4



Elastic Shape Space

@ In elastic shape analysis, a shape is
invariant to

e Translation

e Scaling

o Rotation

o Reparameterization

geodesic without reparameterization

geodesic with reparameterization
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Figure: All are the same shape.
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Geodesic and Distance

@ Geodesic is path with constant velocity

o Distance is the length of the shortest geodesic
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Representation of Shapes: Removing Translation and

Rescaling

The square root velocity (SRV) framework given in [SKJJ11]:

]LZ
@ The SRVF is:

q(t):{%, i 118(1)]l2 # 0
0, if |IB(e)lla=0,

where || - ||2 denotes the
2-norm.

preshape space

@ The preshape space /, (that removes translation and rescaling) is

{act? [ latee=1. [ awliatollee=of.
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Rotation and Reparameterization Group

@ The rotation group

SO(n) ={0 € R™"|
070 = I,,det(0) = 1}

preshape space

V

e~ £, shape space
2Nl (2]

@ The reparameterization group 1]

I = {7 : D — D]y is orientation-preserving, smooth bijections.}
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Shape Classification Based on Shape Distances:

Outline:
o Classification method: 1-Nearest Neighbor

@ Requires a notion of distance between shapes
— we use a well-known elastic shape distance
@ An efficient method to compute shape distances

o An algorithm that computes the distances
— our contribution

o Experiments on a bigger dataset
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Geodesic Algorithm Description
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Figure: I,: preshape space; £,: shape space.

Left: Path-straightening method [SKJJ11] in preshape space of closed curves;
Right: Remove rotation and reparameterization with:
(i) coordinate descent [SKJJ11]

(ii): Riemannian method (our approach)
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Removing Rotation and Reparameterization

e CD (Coordinate Descent) [SKJJ11]
o Fixed stepsize
o Slow convergence for small stepsize
o May not converge for large stepsize

@ Riemannian optimization methods:

o RSD (Riemannian Steepest Descent)

@ Riemannian Armijo condition for stepsize choosing
o Global convergence to a stationary point
@ Linear convergence rate

o LRBFGS (Limited-memory version of Riemannian BFGS)

@ Riemannian Armijo condition for stepsize choosing
o Global convergence to a stationary point
o Faster convergence rate
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Shape Classification Based on Shape Distances

Outline:
o Classification method: 1-Nearest Neighbor

@ Requires a notion of distance between shapes
— we use a well-known elastic shape distance
@ An efficient method to compute shape distances

o An algorithm that computes the distances
— our contribution

o Experiments on a bigger dataset
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Data Sets

MPEG-7 dataset [Uni]
@ 1400 binary images
@ 70 clusters
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Flavia leaf dataset [WBX*07]
@ 1907 images of leaves

@ 32 species
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@ Boundary curves: BWBOUNDARIES function in Matlab
@ 100 points in R? used for each boundary curve

@ A path in preshape space is represented by 11 curves
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Experiment | : Results
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Comparisons of algorithms with 50 iterations. This figure shows the
average relationship between the number of iterations and the cost
function values.
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Experiment | : Results
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Comparisons of algorithms with 50 iterations. This figure shows the
average relationship between the computational time and the cost
function values.
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Experiment Il : One Nearest Neighbor Results

Class 1 Class 2
1.4 0.2
1.3 0.3

A‘

@ The 1NN metric, i1, computes the percentage of points whose
nearest neighbor are in the same class, i.e,

1 if point / and its nearest neighbor

1 n
w=- g c(n, C(i)= are in the same cluster;
n 4 .
i=1 0 otherwise.
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Experiment Il : INN Results

o Flavia dataset is used

Consider 10 species and 5 images from each species, i.e., 50 images
in total

All pairwise distances are considered

Stopping criteria: relative change of the cost function (distance)
smaller than 10~

Results:
CD[SKJJ11] | RSD | LRBFGS
u 0.88 0.90 0.90
Mean Compute Time(sec) 34.25 30.97 11.05
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@ A well-known elastic shape distance is used
@ An existing path-straightening method in preshape space is used

o An efficient algorithm to compute geodesic and shape distances in
shape space — our contribution

o A Riemannian approach applied to the path-straightening in
preshape space

o A good initial guess for the O and ~ is used
o Better performance in terms of time and robustness

o Comparable or even better 1NN results
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