A Riemannian Approach for Computing Geodesics in Elastic Shape Analysis

Yaqing You¹, Wen Huang², Kyle A. Gallivan¹ and P.-A. Absil²

¹Florida State University

²Université Catholique de Louvain

December 15, 2015

Possible Applications of Shape Analysis

A Simplified Shape Classification Problem

Outline: Shape Classification Based on Shape Distances

- A Classification method
- Requires a notion of distance between shapes
 → we use a well-known elastic shape distance
- An efficient method to compute shape distances
 - An algorithm that computes the distances \rightarrow our contribution
 - Experiments on a bigger dataset

Elastic Shape Space

- In elastic shape analysis, a shape is invariant to
 - Translation
 - Scaling
 - Rotation
 - Reparameterization

Figure: All are the same shape.

• Geodesic is path with constant velocity

• Distance is the length of the shortest geodesic

Representation of Shapes: Removing Translation and Rescaling

The square root velocity (SRV) framework given in [SKJJ11]:

- The SRVF is: $q(t) = \begin{cases} \frac{\dot{\beta}(t)}{\sqrt{||\dot{\beta}(t)||_{2}}}, & \text{if } ||\dot{\beta}(t)||_{2} \neq 0; \\ 0, & \text{if } ||\dot{\beta}(t)||_{2} = 0, \end{cases}$ where $\|\cdot\|_{2}$ denotes the 2-norm.
 - The preshape space I_n (that removes translation and rescaling) is

$$\left\{q\in \mathbb{L}^2|\int_{\mathbb{S}^1}||q(t)||dt=1,\int_{\mathbb{S}^1}q(t)||q(t)||dt=0
ight\}.$$

Rotation and Reparameterization Group

The reparameterization group

 $\Gamma = \{\gamma : \mathbb{D} \to \mathbb{D} | \gamma \text{ is orientation-preserving, smooth bijections.} \}$

Outline:

- Classification method: 1-Nearest Neighbor
- Requires a notion of distance between shapes
 → we use a well-known elastic shape distance
- An efficient method to compute shape distances
 - An algorithm that computes the distances \rightarrow our contribution
 - Experiments on a bigger dataset

Geodesic Algorithm Description

Figure: I_n : preshape space; \mathfrak{L}_n : shape space.

Left: Path-straightening method [SKJJ11] in preshape space of closed curves; Right: Remove rotation and reparameterization with:

(i) coordinate descent [SKJJ11]

(ii): Riemannian method (our approach)

Removing Rotation and Reparameterization

• CD (Coordinate Descent) [SKJJ11]

- Fixed stepsize
- Slow convergence for small stepsize
- May not converge for large stepsize
- Riemannian optimization methods:
 - RSD (Riemannian Steepest Descent)
 - Riemannian Armijo condition for stepsize choosing
 - Global convergence to a stationary point
 - Linear convergence rate
 - LRBFGS (Limited-memory version of Riemannian BFGS)
 - Riemannian Armijo condition for stepsize choosing
 - Global convergence to a stationary point
 - Faster convergence rate

Outline:

- Classification method: 1-Nearest Neighbor
- Requires a notion of distance between shapes
 → we use a well-known elastic shape distance
- An efficient method to compute shape distances
 - An algorithm that computes the distances \rightarrow our contribution
 - Experiments on a bigger dataset

Data Sets

MPEG-7 dataset [Uni]

- 1400 binary images
- 70 clusters

Flavia leaf dataset [WBX⁺07]

- 1907 images of leaves
- 32 species

- Boundary curves: BWBOUNDARIES function in Matlab
- 100 points in \mathbb{R}^2 used for each boundary curve
- A path in preshape space is represented by 11 curves

Experiment I : Results

Comparisons of algorithms with 50 iterations. This figure shows the average relationship between the number of iterations and the cost function values.

Experiment I : Results

Comparisons of algorithms with 50 iterations. This figure shows the average relationship between the computational time and the cost function values.

Experiment II : One Nearest Neighbor Results

 The 1NN metric, μ, computes the percentage of points whose nearest neighbor are in the same class, i.e,

$$\mu = \frac{1}{n} \sum_{i=1}^{n} C(i), \quad C(i) = \begin{cases} 1 & \text{if point } i \text{ and its nearest neighbor} \\ & \text{are in the same cluster;} \\ 0 & \text{otherwise.} \end{cases}$$

Experiment II : 1NN Results

- Flavia dataset is used
- Consider 10 species and 5 images from each species, i.e., 50 images in total
- All pairwise distances are considered
- $\bullet\,$ Stopping criteria: relative change of the cost function (distance) smaller than $10^{-4}\,$

Results:

	CD[SKJJ11]	RSD	LRBFGS
μ	0.88	0.90	0.90
Mean Compute Time(sec)	34.25	30.97	11.05

- A well-known elastic shape distance is used
- An existing path-straightening method in preshape space is used
- An efficient algorithm to compute geodesic and shape distances in shape space \rightarrow our contribution
 - A Riemannian approach applied to the path-straightening in preshape space
 - A good initial guess for the ${\it O}$ and γ is used
 - Better performance in terms of time and robustness
 - Comparable or even better 1NN results

📕 A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7):1415–1428, September 2011. doi:10.1109/TPAMI.2010.184.

Temple University.

Shape similarity research project.

S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang.

A leaf recognition algorithm for plant classification using probabilistic neural network.

2007 IEEE International Symposium on Signal Processing and Information Technology, pages 11–16, 2007. arXiv:0707.4289v1.