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Possible Applications of Shape Analysis
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A Simplified Shape Classification Problem
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Outline: Shape Classification Based on Shape Distances

A Classification method

Requires a notion of distance between shapes
→ we use a well-known elastic shape distance

An efficient method to compute shape distances

An algorithm that computes the distances
→ our contribution
Experiments on a bigger dataset
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Elastic Shape Space

In elastic shape analysis, a shape is
invariant to

Translation
Scaling
Rotation
Reparameterization

geodesic without reparameterization

geodesic with reparameterization

Figure: All are the same shape.
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Geodesic and Distance

Geodesic is path with constant velocity

Distance is the length of the shortest geodesic
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Representation of Shapes: Removing Translation and
Rescaling

The square root velocity (SRV) framework given in [SKJJ11]:

The SRVF is:

q(t) =

{
β̇(t)√
||β̇(t)||2

, if ||β̇(t)||2 6= 0;

0, if ||β̇(t)||2 = 0,

where ‖ · ‖2 denotes the
2-norm.

lnq1

q2

preshape space

L2

The preshape space ln (that removes translation and rescaling) is{
q ∈ L2|

∫
S1

||q(t)||dt = 1,

∫
S1

q(t)||q(t)||dt = 0

}
.
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Rotation and Reparameterization Group

The rotation group

SO(n) =
{
O ∈ Rn×n|

OTO = In, det(O) = 1
}

The reparameterization group

Γ = {γ : D→ D|γ is orientation-preserving, smooth bijections.}

lnq1

q2

Ln

[q1] [q2]
shape space

preshape space
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Shape Classification Based on Shape Distances:

Outline:

Classification method: 1-Nearest Neighbor

Requires a notion of distance between shapes
→ we use a well-known elastic shape distance

An efficient method to compute shape distances

An algorithm that computes the distances
→ our contribution

Experiments on a bigger dataset
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Geodesic Algorithm Description

lnq1

q2

γ0

γ1

......
γ∗

lnq1

q2

Ln

[q1] [q2]

−gradq2
distln

q1
2

......

q∗2

Figure: ln: preshape space; Ln: shape space.

Left: Path-straightening method [SKJJ11] in preshape space of closed curves;
Right: Remove rotation and reparameterization with:

(i) coordinate descent [SKJJ11]

(ii): Riemannian method (our approach)
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Removing Rotation and Reparameterization

CD (Coordinate Descent) [SKJJ11]

Fixed stepsize
Slow convergence for small stepsize
May not converge for large stepsize

Riemannian optimization methods:

RSD (Riemannian Steepest Descent)

Riemannian Armijo condition for stepsize choosing
Global convergence to a stationary point
Linear convergence rate

LRBFGS (Limited-memory version of Riemannian BFGS)

Riemannian Armijo condition for stepsize choosing
Global convergence to a stationary point
Faster convergence rate
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Shape Classification Based on Shape Distances

Outline:

Classification method: 1-Nearest Neighbor

Requires a notion of distance between shapes
→ we use a well-known elastic shape distance

An efficient method to compute shape distances

An algorithm that computes the distances
→ our contribution

Experiments on a bigger dataset
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Data Sets

MPEG-7 dataset [Uni]

1400 binary images

70 clusters

Flavia leaf dataset [WBX+07]

1907 images of leaves

32 species

1 2 3 4 5 6 7
8

9 10
11 12

13
14

15 16
17 18

19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44

45 46 47 48 49 50
51

52 53
54 55

56

57
58 59 60 61

62
63 64 65 66 67

68 69
70

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Boundary curves: BWBOUNDARIES function in Matlab

100 points in R2 used for each boundary curve

A path in preshape space is represented by 11 curves
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Experiment I : Results
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Comparisons of algorithms with 50 iterations. This figure shows the
average relationship between the number of iterations and the cost
function values.
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Experiment I : Results
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Comparisons of algorithms with 50 iterations. This figure shows the
average relationship between the computational time and the cost
function values.
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Experiment II : One Nearest Neighbor Results

The 1NN metric, µ, computes the percentage of points whose
nearest neighbor are in the same class, i.e,

µ =
1

n

n∑
i=1

C (i), C (i) =

1 if point i and its nearest neighbor
are in the same cluster;

0 otherwise.
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Experiment II : 1NN Results

Flavia dataset is used

Consider 10 species and 5 images from each species, i.e., 50 images
in total

All pairwise distances are considered

Stopping criteria: relative change of the cost function (distance)
smaller than 10−4

Results:

CD[SKJJ11] RSD LRBFGS
µ 0.88 0.90 0.90

Mean Compute Time(sec) 34.25 30.97 11.05
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Summary

A well-known elastic shape distance is used

An existing path-straightening method in preshape space is used

An efficient algorithm to compute geodesic and shape distances in
shape space → our contribution

A Riemannian approach applied to the path-straightening in
preshape space

A good initial guess for the O and γ is used

Better performance in terms of time and robustness

Comparable or even better 1NN results
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