

Communication efficient coreset sampling for distributed learning Yawen Fan, Husheng Li, The University of Tennessee, Knoxville

Motivation

- Modern machine learning problem has large scale and requires distributed setting for storage and computation.
- Communication between the distributed computation unit becomes the bottleneck of the system's performance.
- Consider the trade-off between accuracy, computation and communication in distributed learning framework.

Exchange Information via Sampling

(a) Data set

(b) Random Sampling

(c) Coreset

- Given the communication constraint, instead of learning based on the whole data set, we prefer to sample a subset of data for learning.
- Random sampling may fail when the size of the subset is small.

Coreset

Coreset is a subset of data with small size and could be considered as a good approximation of the original data set.

Definition

- A family of target function $f \in F$, Loss function L and Data set D
- With probability 1β and $\forall f \in F$, *if*
- $|E_M[L(f(x))] E_D[L(f(x))]| \le \epsilon E_D[L(f(x))]$
- Then we call M is the *Coreset* of D

Distributed Coreset Boosting

Instead of sending the whole local data set to the master, \bullet each worker node selectively sends the Coreset. Comparing to random sampling, the master node could

learn a better classifier based on coreset.

The sensitivity of the sample

 \succ For each sample $z_i \in D$, we define its sensitivity as

$$\phi_i(\mathcal{F}, L) = \sup_{f \in \mathcal{F}} \frac{L(f(z_i))}{\sum_{j=1}^{|\mathcal{D}|} L(f(z_j))}$$

 \succ The sensitivity is large only if there exists at least one function $f \in F$, such that

$$L(f(z_i)) \gg L(f(z_j)), \quad \forall j \neq i$$

 \succ Large sensitivity indicates that for the given function family F, the sample z_i has larger loss than any other sample in the data set.

Main Theorem

Suppose the feature X is scaled to [0,1]. Assume h(X)is η -bounded and the empirical loss for $h^t(x)$ satisfies $\hat{L}_{sm}^{M}(h^{t}) \leq (1+\beta)(1-\alpha)$, then with probability $1-\delta$, the output of proposed algorithm could achieve error rate $\min_{h \in H} Err(h) + \epsilon$ and converges in $O(\frac{1}{\epsilon^{2-2c}})$ iterations.

Result

- AdaBoost (Freund, Yoav. "An adaptive version of the boost by majority algorithm." Machine learning 43.3 (2001): 293-318.)
- SmoothBoost (Servedio, Rocco A. "Smooth boosting and learning (2003): 633-648.)
- AgnBoost (Chen, Shang-Tse, Maria-Florina Balcan, and Duen Horng Chau. "Communication efficient distributed agnostic boosting." Artificial Intelligence and Statistics. 2016.)

Data set	WebSpam	CovType	Үаноо!
SmoothBoost Coreset Sampling			
Acc_{tr} %	91.54 (0.2)	75.45 (0.4)	62.90 (0.3)
Acc_{te} %	90.19 (0.3)	75.15 (0.3)	62.35 (0.2)
TIME	104.1s	200.9s	$1200.3 \ s$
Clustering	14.1s	30.2s	$198.3 \mathrm{~s}$
BOOSTING	90 s	170.7s	$1002.0 \ s$
SmoothBoost Random Sampling			
Accu _{tr} %	89.49(0.2)	73.06(0.3)	60.11(0.4)
Accu _{te} %	88.75(0.2)	$72.90\ (0.5)$	60.01 (0.2)
TIME	82.1s	84.1s	903.5s
AgnosticBoost with Subset			
Accu _{tr} %	90.16(0.2)	74.32(0.2)	61.14(0.5)
Accu _{te} %	90.00(0.1)	73.09(0.4)	61.01(0.4)
TIME	93.1s	210.1s	1223.5s
AdaBoost with Random Sampling			
Accu _{tr} %	89.38(0.1)	73.32(0.3)	59.14(0.5)
Accu _{te} %	88.97(0.1)	71.09(0.4)	58.11(0.4)
TIME	84.1s	75.3 s	870.2 s

Accuracy

with malicious noise." Journal of Machine Learning Research 4.Sep

