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Challenges in DP-FTN-HoM Systems
• Cross-polarization Interference (XPI)
• Inter-symbol interference (ISI)

- FTN-induced ISI
- Multipath ISI

• Phase noise (PN)

• Increasing cellular-traffic demands 
warrant spectral efficiency (SE) 
improvement for the existing microwave 
backhaul links.

• Three technologies considered here
- Dual-polarization (DP)
- Faster-than-Nyquist (FTN) Signaling
- Higher-order modulation (HoM)
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• τ – FTN acceleration factor
• O – RRC roll-off
• FEC – Forward-error correction
• ℎ"& – overall ISI channel taps
• PQ) – transmitter PN (Wiener process)

• PR) – receiver PN (Wiener process)

• To improve SE of the fixed wireless backhaul links, synchronous DP-FTN HoM
systems have been investigated for the first time in this work.

• DP system suffers from XPI, FTN causes ISI, and HoM formats are vulnerable to 
PN. 

• A joint XPIC and PN compensation scheme coupled with an adaptive LMS-DFE is 
proposed to mitigate interference and accomplish carrier phase tracking.

• FTN systems with the proposed method exhibit 3-6 dB SNR gain over Nyquist 
transmission that uses higher modulation orders to achieve the same data rate.

• For a given modulation order, DP-FTN offers 12-25% SE improvement over DP-
Nyquist systems with a 1.7-3 dB SNR degradation.

This work was supported by Huawei Canada, and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

• A new strategy to mitigate 
ISI, XPI and PN jointly. 

• FTN-ISI, multipath ISI and 
XPI are modeled as a 
combined two-dimensional 
(2-D) ISI channel.

• 2-D decision feedback 
equalizer (DFE) coupled 
with PN tracking.

• Least-mean square (LMS) 
updation strategy to adaptively 
compute:

– 2-D feedforward filter (FFF) tap weights
– 2-D feedback filter (FBF) tap weights
– PN estimates per pol. branch

• FFF adaptation and PN estimation 
are coupled together. 
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Shannon bound, w/o PN, FTN and XPI
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Discrete-time baseband system model

LMS	adaptation:
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BER vs SNR SE vs SNR

• Coded bit-error rate (BER) and spectral efficiency (SE) are evaluated 
as a function of signal-to-noise ratio (SNR). 

• DP-FTN systems show huge SE gains over higher-order DP-Nyquist 
systems in the presence of PN.


