

Multicarrier Phase Modulated Continuous Waveform for Automotive Joint Radar-Communications System

Sayed Hossein Dokhanchi†• Bhavani Shankar†• Thomas Sifter* • Björn Ottersten†

Interdisciplinary Centre for Security, Reliability and Trust (SnT),

University of Luxembourg[†], and IEE SA^{*}

Objective and Methodology

- (a) A key motivation behind unified radar and communications system design is to address the problem of spectrum shortage
- (b) Unified radar and communications waveform enables reuse of hardware,
- (c) Need to estimate radar parameters (range, angles of arrival, Doppler shifts) and communications symbols
- (d) Coupling between the quantities impacts estimation quality
- (e) Novel waveform based on multicarrier phase modulated continuous waveform (MC-PMCW) allowing for separation of parameters into different domains

System Model

- 'Tx' is the transmitter and 'Rx' is the receiver vehicles
- 'T1' and 'T2' stands for the two target vehicles - $R_q^{(1)}$ and $R_q^{(2)}$ are transmit-target and target-receiver ranges of qth target, respectively - The $\theta^{(t)}$ is angle of departure, $\theta_1^{(r)}$ and $\theta_2^{(r)}$ are angles of arrival

Waveform type	Resolution
PMCW-JRC	• $\Delta f_D = \frac{1}{t_{CPI}} = \frac{1}{M_p t b} = 4 \text{ MHz} \frac{1}{10 \text{ k}} = 400 \text{ Hz}$
	• $\Delta R = \frac{c}{B} = 75 \text{ mm}$
	• $\Delta \theta = \frac{\pi}{N_r} = \frac{\pi}{10}$
OFDMA-JRC	• $\Delta f_D = \frac{1}{t_{CPI}} = 400 \text{ Hz}$
	• $\Delta R = \frac{c}{B_u} = \frac{c}{N_{sub}\Delta f} = \frac{300 \text{ M}}{800 \text{ M}} \approx 37 \text{ cm}$
	• $\Delta \theta = \frac{\pi}{N_r} = \frac{\pi}{10}$
Proposed waveform	• $\Delta f_D = \frac{1}{t_{\text{CPI}}} = 400 \text{ Hz}$
	• $\Delta R_1 = \frac{c}{B} = 75 \text{ cm}$
	• $\Delta R_2 = \frac{\Delta R_1}{Nc} = 75 \text{ mm}$
	• $\Delta \theta = \frac{\pi}{N_{\rm r}} = \frac{\pi}{10}$
Lahla 1 Cl	aractaristics of proposed IDC

Table 1. Characteristics of proposed JRC waveforms

Simulation Result

- t_{CPI} is time of coherent processing interval - c is speed of the light
- t_b represents time of sending one block of code in PMCW/ MC-PMCW (t_b =4 μ s) and OFDM symbol time in OFDMA JRC (t_b =0.1 ms)
- $N_r = 10$ is number of receive antennas
- N_u =5 is the number of users
- B = 4 GHz denotes total available bandwidth
- $B_u = B/N_u$ stands for user bandwidth
- $N_c = 10$ is the number of carriers in MC-PMCW
- *N_{sub}*=8 K are the number of sub-carriers in OFDMA

Figure 1. Vehicle configuration for joint radar-communications system

Proposed MC-PMCW transmit signal

$$\begin{aligned} x_{i,n}(t) &= \sum_{m=0}^{M-1} a_{n,m} \bigg[\sum_{l=0}^{L-1} e^{j\phi_l} s(t - lt_c - mt_b) \bigg] e^{j2\pi (f_c + f_n)t} \\ &\times e^{jk \sin(\theta^{(t)})(i-1)\frac{\lambda}{2}}, \ i \in [1, N_t], n \in [1, N_c] \end{aligned}$$

Received signal

Dessiver Dresses

Figure 2. Uncoded BER performance of three JRC waveforms: proposed, OFDMA [2] and PMCW [1]

SNR = 5 dB						
JRC paradigm	R	f_D	θ	Throughput		
PMCW-JRC	0.1009	73.9	2.4116	20 kb/s		
OFDMA-JRC	0.57	309.8	2.13	340 kb/s		
MC-PMCW-JRC	0.1881	65	2.0111	370 kb/s		
SNR = 25 dB						
JRC paradigm	R	f_D	θ	Throughput		
JRC paradigm PMCW-JRC	R 0.0075	$\frac{f_D}{53}$	<i>θ</i> 0.1246	Throughput 20 kb/s		
r e	- 0	0 1		01		

Table 2. MSE of radar parameter estimates and communications throughput of three JRC paradigms, R = 10 m, $f_D = 2$ k, $\theta = 50$ deg.

Receiver Processing

How parameters manifest in the received signal:

- a) Range appears in carriers dimension and in delay i.e., fast-time (through $s(t lt_c mt_b \tau_q)$).
- b) Communications symbols $a_{n,m}$, appear in frequency domain (through the index n) and in slow-time (through the index m).
- c) Doppler shifts come into slow-time.
- d) Angles of arrival only appears in spatial domain.

Key receiver steps:

Step 1: We estimate range from fast-time motivated by the fact that it is not coupled with other parameters.

Step 2: Employ the range estimates for recovering range from data symbols in frequency domain followed by detecting the data symbols.

Step 3: We can distinguish the data symbols from Doppler shifts in slow-time to estimate Doppler shifts.

Step 4: We estimate Doppler and angles of arrival from slow-time and spatial domains, respectively.

Conclusion

- Alternative waveform for JRC overcoming the major challenge of lack of degrees of freedom in OFDMA and PMCW
- Embeds radar and communications parameters in different domains enabling low complexity estimation
- Applicable for emerging automotive JRC

References

- S. H. Dokhanchi, M. R. Bhavani Shankar, Y. A. Nijsure, T. Stifter, S. Sedighi and B. Ottersten, "Joint Automotive Radar-Communications Waveform Design", presented at *IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)*, Montreal, QC, Canada, October 2017.
- [2] S. H. Dokhanchi, M. R. Bhavani Shankar, T. Stifter, and B. Ottersten, "OFDM-based Automotive Joint Radar-Communication System", accepted to be presented at *IEEE Radar Conference (RadarConf)*, Oklahoma, OK, 2018.

The authors would like to thank the Luxembourg National Research Fund (FNR), for supporting this work under AFR-PPP grant for Ph.D. projects (Reference 11638687).

