Adaptive Mode Switching Algorithm for Dual Mode SWIPT with Duty Cycle Operation

Sungkyunkwan Univ. (SKKU) Engineering Research Center (ERC) Jong Jin Park, Jong Ho Moon, Kang-Yoon Lee, and **Dong In Kim**

Motivation : Unified Design of WIT & WPT

Low receive sensitivity (-60dBm)

WIT

Wireless Information Transfer

Objective: Data rate

Long range (~km)

Modulation and coding scheme (MCS)

High receive sensitivity (over -10dBm)

WPT

Wireless Power Transfer

Short range (~m)

Objective: Power efficiency

Power management module (PMM)

For unified SWIPT...

SWIPT

Simultaneous Wireless Information and Power Transfer

Requires wide range of receive sensitivity

Duty cycle operation for self-powering

Adaptive mode switching (MS) between ID and EH

Needs R-E tradeoff optimization

Motivation: RF-to-DC PCE of SWIPT

- To improve R-E tradeoff performance
- : Cross-over of PCE !
- - Single tone for high rate, short range
 - Multi-tone for low rate, long range

*PCE: Power Conversion Efficiency

Main Contribution:

- Duty Cycle based Dual Mode SWIPT system
- Mixed time-scale Adaptive Mode Switching algorithm

→ Mode Switching btw. single/multi-tone

Adaptable Mode Switching (MS) threshold

(P_{th}) for flexible R-E tradeoff optimization

System Model: Dual Mode SWIPT

Dual Mode SWIPT Receiver

Harvested energy at Energy Path $E_{EH} = \frac{D_v}{D_v + 1} T_v \times \widehat{\Psi}_{EH}(P_R) \times P_R$

Data rate at Information/PAPR Path $R_{v} = \begin{cases} \frac{1}{D_{v} + 1} (1 - p_{out}(M)) \log_{2} M, \\ \frac{1}{D_{v} + 1} \frac{1}{BT_{m}} (1 - p_{out}(Q)) \log_{2} Q, \end{cases}$ for single tone for multi-tone

 $\widehat{\Psi}_{EH}$: Estimated PCE function p_{out} : Outage probability *M*: Modulation index

- P_{th} is updated over each long-term window.

Q: # of multi-tone

Duty ratio (D_n) is calculated in each channel block.

System Model: Multi-tone/PAPR Modulation

Example of PAPR modulation:

2bits	5 N	PAPR _{RX}	F_N
[0 0]	1	2	$\{f_{(1)}\}$
[0 1]	2	4	$\{f_{(1)}, f_{(2)}\}$
[1 1]	3	6	$\{f_{(1)}, f_{(2)}, f_{(3)}\}$
[10]	4	8	$\{f_1, f_2, f_3, f_4\}$

Receiver just estimates the PAPR value, thus

low complexity and low energy consuming.

The received PAPR at the PAPR estimator:

$$PAPR = \frac{\max_{t \in [0, T_m]} |y_{ID}|}{\frac{1}{T_m} \int |y_{ID}(t)|^2}$$

$\left| \int_{D}^{2} (t) \right|^{2}$ $\cong 2N$

 $^{2} dt$

Adaptive Mode Switching Algorithm

- Adaptive MS control module do..
 - Adjust duty ratio (D_v) for self-powering (MS between ID/EH)
 - Proper mode selection between single tone and multi-tone
 - Optimize modulation index (M) and # of multi-tone (Q) for R-E tradeoff
 - Adaptable MS threshold (P_{th}) for flexible R-E tradeoff

- Outer loop: Update $P_{th} \rightarrow MS$ between single and multi-tone
- Inner loop: Update D_v , M or $Q \rightarrow MS$ between ID and EH

Global Optimization

(P1): $\max_{\substack{P_{th}\\ S.t.}} \mathbf{E}_{\nu}[R_{\nu}]$ s.t. $E_{EH} \ge E_{C,i}$ $p_b \le p_{tag}$

Long-term Optimization

(P2): $\max_{P_{th}} \mathbf{E}_{\boldsymbol{v}}[R_{\boldsymbol{v}}^*]$

Short-term Optimization

(P3): $\max_{D_v} R_v$

s.t. $D_v \ge \frac{P_{C,i}}{P_{EH}}$ $p_b \le p_{tag}$

Adaptive Mode Switching Algorithm

Mode selection example:

Multi-Tone Transmission

Boundary between single and multi-tone is subject to change

as P_{th} is updated via each long-term optimization (P2).

Operation Description

Short range, large M for high data rate

Single tone but *outage occurred*, switch to multi-tone SWIPT

Multi-tone SWIPT, small Q for R-E tradeoff

Long range, large Q for self-powering

Self-powering *infeasible*, WPT only with maximum Q

Results

Channel estimation affects power consumption:

 \Box As β increases, the rate is penalized since more power is required. \Box Large β forces P_{th} to be increased \rightarrow more likely multi-tone mode selection.

Value

Frequency-flat Rayleigh fading, 900MHz center freq.

2.5

40dBm

1MHz

-130dBm/Hz

0.3472

Single tone 0.2mW, Multi-tone 0.12mW

0.01

 β : the ratio of power consumption for channel estimation to that for information decoding (i.e., $\beta = P_{ch.est}/P_{C.s}$).