
1

Reduced-Reference Structural Quality Assessment
for Retargeted Images

Chau-Wai Wong, Student Member, IEEE, Wenjun Lu, Member, IEEE, and Min Wu, Fellow, IEEE

Abstract—Recent years have witnessed tremendous growth in
the generation and consumption of digital images. Monitoring
and evaluating image quality is an important issue for online
and mobile media applications. Conventional quality assessment
work mostly focus on intensity level distortion caused by op-
erations that do not change image aspect ratio/size, such as
distortion caused by compression, noise, and blurring. Here, we
study the problem of quality assessment for images undergone
content-adaptive resizing, also known as retargeting operations.
Retargeting is an increasingly popular technique for rendering
images to screens with different aspect ratios, and the dominant
distortion in question is mostly on the structural and content level
rather than on the intensity or signal level. Quality assessment on
image structural distortion is not as well studied as the quality
assessment on intensity level distortions. In this work, we design
a reduced-reference corner-point-matching-based framework to
analyze the structural distortion caused by retargeting and
propose a set of quality scores and fuse them to achieve positive
correlation with human observations. The proposed quality
scores by each individually achieve comparable performance with
the best known full-reference quality metric; and the fused score
has a better performance than this best quality metric.

Index Terms—Image quality assessment, reduced reference,
image retargeting.

I. INTRODUCTION

The goal of automatic image quality assessment is to
design objective quality metrics that correlate well with human
subjectives. Such automated quality metrics help enhance the
efficiency and objectivity of human evaluations on image qual-
ity degradations that might happen during image distribution.
Depending on the amount of available information of the
original image, image quality assessment can be classified
into full reference (the reference image is fully available),
reduced reference (only compact partial information about the
reference image is available), and no reference (no access to
the reference image is allowed). A comprehensive survey of
image quality assessment techniques can be found in [1].

A fundamental way of assessing image quality is by
subjective evaluation involving human observers. The mean
opinion score (MOS) is one of the commonly used and well
regarded subjective measures for image quality assessment.
However, involving human observers can be expensive and not
scalable for many practical applications. Therefore, the goal of
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objective image quality assessment is to design computational
models such that an estimated quality by the models correlates
well with human subjectivity. The simplest and most widely
used full reference quality metric is the mean squared error
(MSE) and related metric of peak signal-to-noise ratio (PSNR).
Although MSE and PSNR are easy to be calculated, their
results are not well matched to the perceived visual quality
of human beings. Taking advantage of known characteristics
of human visual system (HVS), most state-of-the-art quality
assessment works have adopted a two-stage structure, namely,
local distortion measure and spatial pooling to obtain a final
quality score. Some representative local distortion measures
include structure similarity (SSIM) index [2], [3], block dis-
crete cosine transform [4] and wavelet-based approaches [5],
[6]. These local quality measures are then pooled together
to maximize the correlation between objective and subjective
image quality ratings [7]–[10].

Most existing image quality assessment work focus on
distortion caused by operations such as compression, additive
noise, blurring, and contrast/brightness changes. These types
of distortions mainly alter the intensity and noise level of the
image, but do not change the image size and the content
structures within the image. In this case, exact pixel-level
correspondences can be established to compute the distortion.
However, the pixel-level distortion does not adequately model
the perceived change of an image to human beings if the
editings to the image are mainly structural, and hence it
is intuitive to quantify the distortion caused by structural
changes explicitly. We model the structural distortion based
on the displacement, addition, and removal of features points
on structural objects such as contours and shapes, which is
different from the perspective taken by the well-known SSIM
family metric [2], [3], [11] that considers interdependencies
among pixels, regions, and features as “structural” information
and often quantifies them through statistics from pixel/feature
domain. The structural distortion that we focus on in this work
is receiving an increasing amount of attention because of the
image retargeting technique that mainly leads to structural
distortion has been increasingly popular to resize images
for better viewing experience on smaller screen sizes such
as mobile phones. Below, we briefly discuss related image
retargeting work and the challenges of quality assessment on
retargeted images.

Image retargeting is a class of techniques that provide
content-adaptive image resizing to facilitate viewing images
on screens of different sizes. Image retargeting methods can
be roughly classified into discrete versus continuous [12].
Discrete approaches remove or insert unimportant pixels or
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patches from the interior of the images [13]–[15]. One repre-
sentative retargeting algorithm is the seam carving [13], which
adaptively removes “seams”, sequences of 8-connected pixels
with low energy values defined by some energy function, from
an original image. The resulting image keeps the most salient
content intact while achieving the desired aspect ratio and
size. Although the results are promising, visible discontinuities
or aliasing artifacts are often noticeable at large aspect ratio
changes. On the other hand, continuous retargeting techniques
optimize a mapping from the source media size to the target
size without explicit content removal. The key idea of these
approaches is to scale visually important feature regions uni-
formly while allowing arbitrary deformations in unimportant
regions of the image. Some representative works include [16]–
[18]. A comprehensive comparison of state-of-the-art image
retargeting techniques can be found in a recent work by Ru-
binstein et al. [19]. Most retargeting algorithms try to minimize
some objective functions that measure the distortion between
the original image and the retargeted ones. In Rubinstein et
al.’s [19] work on comparing different retargeting algorithms,
the authors compared objective functions such as bidirectional
similarity (BDS) [20], bidirectional warping (BDW) [15], and
earth mover’s distance (EMD) [21] with human subjective
ratings. These three objective functions can serve as full-
reference metrics for quality assessment on retargeted images.
SIFT flow (SIFTflow) [22] can also be regarded as a full-
reference quality assessment metric since it generates the hash
by calculating the 128-d SIFT descriptor for every pixel of the
image.

In this work, we study the problem of quality assessment
for retargeted images, under the assumption that only limited
side information is available, i.e., a reduced-reference scenario.
Given that the original reference image is not available in many
real-world applications, reduced-reference quality assessment
will be a more feasible alternative, where the compact partial
information can be embedded into the header file of a po-
tentially retargeted image and be used to monitor and assess
image quality. The problem itself is interesting as it helps us
understand what specific features in the image content that
actually capture the structural distortion well as perceived by
humans. We notice a parallel work [23] which focuses on the
quality assessment in the full-reference scenario which is a
much stringent scenario than ours, and yet its experimental
methodology is not fully compatible with Rubinstein et al.’s
work [19] that we heavily base on, hence we leave possible
comparisons to further work.

We approach the problem of reduced-reference quality
assessment of retargeted images by looking at strong corner
points on salient image edges. Corner points can be compactly
represented and encoded as a binary map, whereas provide
good amount of information on content structure of the image.
The challenge lies in given a small set of corner points,
i) how to identify structural distortion between the original
image and the retargeted image, and ii) how to quantify
the structural distortion into scores that are consistent with
human subjective ratings. We utilize the shape context work
from Belongie et al. [24] to find correspondences between
the corner points from the original image and those in the

retargeted image. Such correspondences reveal a distortion
vector field where each distortion vector captures how a corner
point has been moved relative to the other corner points.
With the distortion vector field, we are able to capture the
structural distortion of the retargeted image using carefully
designed metrics: metrics based on parametric affine transform
models, metrics derived from saliency-weighted inconsistency
between local neighborhoods, and etc. Our proposed quality
metrics show comparable performances as and fused metric
even outperforms the best known full-reference metrics for
the retargeting operation.

There are several contributions of our work: (1) To our
best knowledge, this is the first dedicated quality assessment
work on image retargeting using compact reduced reference.
The focus is on content-level structural distortion as compared
to intensity-level distortion. Intensity-level distortion has been
extensively studied but structural distortion has received rel-
atively fewer research effort. (2) We made contributions in
achieving a more fair comparison comparison between ob-
jective quality scores and human subjective ratings motivated
by the observation that human rating has inherent fuzziness
in deciding between images of similar quality. By grouping
subjective scores into clusters and penalizing intra- and inter-
cluster discordant pairs with different strengths, we provide
an alternative way of comparing scores in a more stable and
meaningful fashion comparing to the general approach of
Kendall’s τ correlation. (3) Our corner point matching-based
framework successfully demonstrates the possibility that even
with very compact side information extracted from the original
image, quality assessment of structural distortion is not only
possible, but also elegant—even better than full-reference
metric, i.e., the earth mover’s distance (EMD). (4) In addition
to be able to give quality scores from various perspectives
and a meaningful fused score, the proposed framework also
provides annotated images showing the displacement vectors
of corner points, and reconstructed original images to give
observers a rough sense of how the original image may look
like. These two types of auxiliary images can be used to
assist human evaluation and as well be extended for many
other applications such as classifying different retargeting
operations.

In the rest of sections, we first describe various components
of the proposed quality assessment algorithm in Section II with
detailed descriptions on the matching part and our proposed
quality metrics. We then explore assessment techniques by
discussing Kendall’s τ and its variant in Section III. Finally,
we present the quality assessment results in Section IV and
conclude in Section V.

II. PROPOSED FRAMEWORK FOR RETARGETED IMAGES

Retargeting algorithms mainly introduce structural changes,
therefore, to carry out image quality assessment on these
images and with reduced references only, we need to extract
compact partial information that can capture the structural
information of the image and allow robust analysis of struc-
tural changes. The partial information used in this work is
a set of corner points extracted from the original image.
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Fig. 1: Reduced-reference quality assessment framework for retargeted images: (a) hash generation; and (b) quality assessment
which not only generates various quality scores, but also provides annotated images showing the displacement vectors of
matched corner points and reconstructed images to give observers a rough sense of how the original image may look like.

In the retargeted image, the corresponding corner points
change locations relative to those in the original image, so
we aim to match the corner points of the retargeted image
against those encoded in the partial information. Given the
highly nonlinear and content-adaptive changes to the image
structure, a robust matching between corresponding corner
points between original and retargeted images is essential
to enable accurate distortion measure. After matching, we
compute quality scores, and obtain annotated images showing
how different regions of the image are changed from the
original reference image. Such annotated images can be used
for subjective structural analysis and image quality measure.
An reconstructed original image can also be generated to
provide the observer a rough sense of how the original image
looks like.

The output of this quality assessment framework includes
not only quality scores, but also annotated images that describe
the structural distortion of the retargeted image in detail. The
role of the quality score is similar to that in conventional
quality assessment work, i.e., to predict the quality degradation
as would be perceived by a human observer. In the case of

structural distortion, recent study by Rubinstein et al. [19]
found that even human beings have difficulties in judging
quality of retargeted images and have large discrepancies on
how important each type of distortion is among content loss,
symmetry violation, distorted edges/lines, and deformed ob-
jects/faces, etc. Therefore, providing a detailed distortion map
in addition to quality scores can be very important to assist
subjective quality assessment on the retargeted images and can
allow for adaptations to the needs for specific applications.

In this paper, we focus our attention on the new and more
challenging issue of the structural/geometric distortion, since
relatively more matured modules measuring other types of
distortion, such as intensity distortion and texture distortion,
can be readily integrated into the framework. For examples,
the intensity and the contrast components of SSIM [2], which
uses block-level mean and variance as features respectively,
can complement our proposed structural distortion measure-
ment component towards a general-purpose quality assessment
scheme. The overall framework is shown in Fig. 1.

Next, we will discuss each major component in the proposed
quality assessment framework.
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A. Compact Selection of Partial Information

In order to evaluate structural distortion, we need to select
compact partial information to capture the structural informa-
tion of the reference image. There have been a wide variety
of detectors for interest point and corner point in literature,
and they can be divided into three categories: contour based,
intensity based, and parametric model based methods. A
comprehensive survey and comparison of local interest point
detectors can be found in [25].

Corner points roughly capture the structural information of
the image as they are typically located on dominant image
structures, and they are also efficient to compute as compared
to more computationally intensive local features such as SIFT.
In this work, we try to reduce the use of partial information
as much as possible by only recording the positions of corner
points. We use the detection method proposed by Harris and
Stephens [26], which identifies corner points through the
intensity information of the local patch around the points.
More specifically, a Harris matrix is computed for each point
as

A =
∑
u

∑
v

w(u, v)

[
I2x IxIy
IxIy I2y

]
where Ix and Iy are the partial derivative of the image intensity
along horizontal and vertical directions, respectively; w(u, v)
are the weights assigned to each neighboring pixel. A Gaussian
weighting can be applied to provide an isotropic response.
A corner point can then be characterized by analyzing the
eigenvalues λ1 and λ2 of the Harris matrix A, where λ1 ≥
λ2. If λ1 ≈ 0 and λ2 ≈ 0, the pixel (x, y) is not an corner
point nor an edge point. If λ1 has large positive value and
λ2 ≈ 0, then an edge point is found. If both λ1 and λ2 have
large positive values, the pixel (x, y) is considered a corner
point. Efficient detection of corner points may use the function
det(A)− k · trace2(A) in place of computing the eigenvalues.

In order to keep partial information as compact as possible
for the reduced-reference settings, we need to control the
number of corner points that are selected. Towards this goal,
we favor the corner points to appear on major object or
structure in the image, rather than capturing small details such
as texture on the background. To suppress noise and retain only
corner points on salient objects, we perform smoothing on the
image before doing the corner point detection. A small amount
of blurring helps remove noisy corner points that might appear
on smaller edges which may not be useful and stable for
evaluating the global structure distortion. Also, in order to
avoid a large amount of corner points in a small neighborhood,
local maximum suppression is carried out to retain only the
dominant corner in a local patch. The larger the window is
used for the local maximum suppression, the more spread out
we can expect from the detected corner points. An example of
corner point detection and selection is shown in Fig. 2, where
we can see that a larger maximum suppression window causes
the detected corner points to spread out more.

After corner points are detected, we need to compactly
encode their positions. By considering the corner map as a
binary image, where corner points are represented by value
1 and all other pixels in the image have value 0, we can

(a) (b)

Fig. 2: Corner points detected at different maximum suppres-
sion window sizes N : (a) N = 3, and (b) N = 15. (Figures
are best viewed in color.)

TABLE I: Compact encoding of corner points

# of corner points 50 80 100 120 150 200

JBIG2 size (byte) 225 276 310 339 391 469
PNG size (byte) 380 475 541 598 682 852

Pre-
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vectors

Fig. 3: Robust matching using distance map, shape context,
and global affine transform.

use the JBIG2 encoding [27] to compactly represent such a
binary image. JBIG2 is an international standard that provides
a very good compression ratio for binary images and serves
as a good candidate for our application. The size of JBIG2
compressed corner map with respect to different number of
corner points is shown in TABLE I. For comparison, we also
show the size of the corner map encoded by PNG format.
We can see that JBIG2 compression provides more than 40%
savings in representing the partial information of corner points
than simple PNG encoding. The simulation results for this
paper are based on the setting that each original image uses
120 corner points as partial information.

B. Robust Matching

The robust matching module aims at creating correspon-
dences between corner points in the original image and those
in the retargeted image, and then output displacement vectors
that can be exploited for determining structural distortion.
As shown in Fig. 3, the module consists of a pre-alignment
stage and an iterative refinement stage, and the latter includes
shape context matching, outlier removal, and global affine
transform. Details of the robust matching module are described
as follows.

1) Pre-alignment: This stage provides a provisional align-
ment compensating the translational motion between the re-
targeted image and its original version by minimizing their
Chamfer distance [28] on distance map. Fig. 4 illustrates
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Fig. 4: Pre-alignment: align corner points from original image to the retargeted image by minimizing Chamfer distance. (Edge
maps inverted.)

the details of the pre-alignment stage. Given the retargeted
image, we first compute its edge map and perform the distance
transform [29] on the edge map. The distance transform, which
generates an image in which value of each pixel represents its
distance to the closest edge point, can be calculated by

dtE(p) = min
pe∈E

‖p− pe‖2

where E is the edge map of the retargeted image, dtE is the
distance-transformed image, pe is a point in E, and p is a
point in dtE . To find the optimal alignment, we overlay the
corner map obtained from the original image onto the distance-
transformed image by examining different shift vectors. For
each shift vector s = (x, y), we compute the Chamfer distance
defined as

d(s) =
1

N

∑
pc

dtE(pc + s)

where pc represents a corner point position, and N is the
total number of corner points encoded as partial information.
A smaller distance indicates that most of the corner points
are located closer to the edges in the retargeted image, and
therefore, a better alignment. The optimal pre-alignment is
then computed as the shift s∗ that gives the minimum Chamfer
distance.

2) Shape context matching: As retargeting operation can
change the internal structure of the image by scaling, carving,
and warping, the task after pre-alignment is to find correspon-
dence between the points in the original and retargeted images.
This task is similar to that of shape matching, where a shape is
matched with another similar but deformed one. Shape context
proposed by Belongie et al. [24] is a useful technique for shape
matching, and we use it here to find correspondence between
corner points.

Shape context is a local descriptor associated with each
shape point to describe the coarse distribution of the rest of
corner points with respect to the current point. Fig. 5 shows
two sets of points represent the same character “A” but has
slightly different shapes, and Fig. 5c shows a partition of polar-
angular bins. For each point, its shape context is essentially a
histogram counting the number of other points that fall into
each of the bins shown in Fig. 5c. Different bins capture shape
information in various orientations and distance relative to the
current point.

For our problem, we compute the shape context for each
corner point, and finding correspondence is then equivalent to
finding for each corner point in one set, a corner point in the

(a) (b) (c)

Fig. 5: Illustration helps to demonstrate the shape context
computation. (Figure from Belongie et al. [24])

other set that has the most similar shape context. The distance
between two shape contexts can be computed using the χ2

test statistic:

C(p, q) =
1

2

K∑
i=1

[hp(i)− hq(i)]2

hp(i) + hq(i)

where hp(i) and hq(i) denote the K-bin normalized shape
context histogram at points p and q, respectively. Given the
shape context distance between all pairs of corner points pi in
the original image and corner points qj in the retargeted image,
we need to find a one-to-one correspondence to minimize the
total cost of matching Cs(p, q) =

∑
i C(pi, qπ(i)), where π is

a permutation representing the one-to-one correspondence. We
further regularize with term ‖p − q‖2 so that Ctotal(p, q) =
αCs(p, q) + (1− α)‖p− q‖2. This matching problem can be
solved using the Hungarian method [30] in O(N3) time.

3) Outlier removal: A small set of neighboring points on
a rigid body usually have similar displacements, and we use
this criterion to perform an additional step of outlier removal
to refine the matching results. For each corner point pi in
the original image, we compute a displacement vector vi =
qπ(i)−pi, which captures the displacement of its corresponding
point in the retargeted image. We then compare vi with every
other displacement vector vj of its neighboring point pj that
falls into a small neighborhood of pi. If the difference between
vi and the average of {vj , j 6= i} is larger than a certain
threshold, we consider (pi, qπ(i)) a false match. The outlier
removal leads to a more robust matching and thus paves the
way to a meaningful distortion evaluation.

4) Affine compensation: The pre-alignment, shape context
matching, and outlier removal perform well for those cases
that retargeted images are not significantly scaled or rotated.
However, for such more difficult cases as significant scal-
ing/rotation and shearing, a correct correspondence may be
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misclassified as an outlier and thus removed. Hence, there is
a need to compensate geometric distortions, possibly before
shape context matching in order to obtain a set of more
trustful correspondences. We propose to transform the original
image by a set of global affine parameters estimated from
the displacement vectors and align with the retargeted image.
Once the warping is done, the shape context matching can
be carried out again to match the affine-transformed version
of original image with retargeted image. The steps iterate as
depicted in Fig. 3, until a set of stable correspondences is
established.

C. Spatial Clustering
The main idea of state-of-the-art retargeting operations is

to resize different parts of the image differently through
scaling, warping, or carving. Salient objects or regions will
be scaled more uniformly so that the aspect ratio of the
object is preserved and minimum distortion is introduced.
For less important regions, the resizing operation will have
fewer constraints since a large distortion can be tolerated. This
main spirit of retargeting motivates us to group corner point
correspondences into clusters so that evaluation for structural
distortion can be carried out differently for various regions
of an image. With clusters having homogeneous displacement
vector fields, more stringent pruning can also be carried out
within clusters to achieve a good matching.

Spatial clustering, by which similar spatial objects are
grouped, is an important component of spatial data mining
[31]. Spatial clustering techniques can be classified into four
categories: partitioning method, hierarchical method, density-
based method and grid-based method. A detailed survey of
spatial clustering techniques can be found in [32]. In this
work, we use the K-medoids algorithm to cluster corner
points. K-medoids is similar to K-means but instead of using
the average of cluster elements as a center, K-medoids uses
the most central data point in the cluster as its center. This
makes K-medoids clustering more robust to noise and outlier
data than K-means clustering. We use an efficient K-medoids
clustering method called Clustering Large Application using
RANdomized Search (CLARANS) [33] for its efficiency and
good quality of clustering. The basic idea of CLARANS is to
perform a randomized search for a node with the minimum
cost in a graph. The node here represents a selection of K-
medoids, and the graph is composed of such nodes and any
two neighboring nodes differ by only one medoid. The use of
randomized search provides the advantage of efficiency and
the benefit of not confining the search to only a localized
area. As both K-means and K-medoids are partition-based
clustering, they have the limitation of requiring to specify
the number of clusters K at the beginning. To alleviate such
a constraint, we select a relatively large K to start with,
then merge neighboring clusters if their displacement vectors
are similar, and split a cluster if the displacement vectors
within are diverse. An example of the spatial clustering is
shown in Fig. 6, where Figs. 6(a) and 6(b) show the original
and retargeted images and Fig. 6(c) shows the corner point
correspondences and their clustering result. Corner points of
different clusters are labeled with different colors.

Fig. 7: Saliency map of the resized image Fig. 6c.

D. Distortion Metrics

Now with the correspondences obtained between corner
points of an original and its retargeted version, we can measure
the structural distortion due to the retargeting operation from
several perspectives.

1) Cluster-level structural distortion: This distortion is
calculated by weighing the distortion of each local cluster with
its saliency. Saliency is a subjective measure that captures
what human observers consider as important in an image.
Examining saliency is an important step in sophisticated
image retargeting methods, and different saliency metrics
have been used in the literature, such as gradient magnitudes
[16] and discontinuity of neighbors if a pixel is removed
[14]. In this work, we use the saliency measure proposed
by Wang et al. [17], which combines the gradient magnitude
and the saliency map by Itti et al. [34]. More specifically,
the gradient information captures structural areas, and the
saliency map captures attractive areas that have different color,
intensity and orientation properties than their surroundings.
The combined saliency map is evaluated as W = Wα ×Wβ ,
where Wα =

√
( ∂
∂xI)2 + ( ∂∂y I)2, and Wβ is the saliency map

by Itti et al. An example of the saliency evaluation is shown
in Fig. 7.

We have now obtained the clusters C1, · · · , Ck of corner
points that indicate how different parts of the image have been
transformed during the retargeting operation, and the saliency
map that shows how important different areas of the image are.
Combining the two, we can compute some quality score that
measures structural distortion through how consistent those
related regions are translated. For each cluster Ci, we select l
neighbor clusters Ci1, · · · , Cil that are within certain distance
threshold to the current cluster. The distortion contributed by
two neighboring clusters is computed as

dij(Ci, Cij) = ‖vi − vij‖ · dse−α·de .

Here vi and vij are the displacement vectors of the medoids
in cluster Ci and Cij , respectively; de is the distance between
the two clusters; ds =

Sij

max(Si+Sj ,Sij)
measures how likely the

two clusters cover the same object, where Si and Sj are the
saliency values of regions covered by Ci and Cij , respectively,
and Sij is the saliency of regions between Ci and Cij . If two
regions of high saliency are connected by other regions of high
saliency, these two regions are likely to cover the same object
or the same group of connected objects. If they are connected
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(a) (b) (c)

Fig. 6: Illustration for spatial clustering: (a) original image, (b) its resized image by a retargeting algorithm called Streaming
Video [18], (c) resized image overlaid with spatial clustered displacement vectors

by regions of low saliency, they may cover different objects,
and therefore the weight assigned to the discrepancy penalty
between their displacement vectors will be lower. The quality
score that measures such cluster-level structural distortion is
computed as

GSS =

K∑
i=1

l∑
j=1

dij(Ci, Cij).

2) Global affine and related global distortions: Given the
corner point correspondences, we are able to estimate a global
affine transform A that transforms the set of corner points
in the original image to the set of corner points in the
retargeted image. The singular value decomposition of the 2-
by-2 matrix A is A = Oθ1DOθ2 , where D is a diagonal
matrix with singular values λ1 and λ2, suggesting that the
transform basically scales along the direction θ1 with factor
λ1 and scales along the orthogonal direction θ2 with factor
λ2. If λ1 and λ2 are close to each other, the global transform
roughly preserves the aspect ratio of the image; if λ1 is much
larger than λ2, the aspect ratio changes significantly and large
perceptual distortion is expected. We define the global affine
cost as

GAffine = log(λ1/λ2).

We propose to incorporate the second measure called global
bending energy, which complements the global affine cost.
It is computed from a parametric thin-plate spline mapping
f : R2 → R2 [35], [36] estimated from the point correspon-
dences obtained in Section II-C using the thin-plate spline
model [37], [38] which is useful to measures how twisted the
estimated mapping f is. The mapping is a superposition of
the global affine transform and a set of affine-free principal
warps, and only the principal warps contribute to the bending
energy defined as

GBending =

∫∫ {(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
}
dxdy.

In this work, we use the global bending energy to measure
the remaining global structural distortion orthogonal to global
affine distortion. A smaller structural distortion leads to less
twisted mapping and thus smaller bending energy.

3) Averaged affine and related averaged distortions: The
affine transform captures linear distortions and is incapable
of capturing higher-order nonlinear warpings and detailed
distortions. We propose to use local affine model to capture
locally specific distortions. We calculate affine distortions for
all clusters individually, weigh them according to the saliency
map, and denote the result as an averaged affine (AAfine)
distortion.

In analogous to global bending serving as a complement
measure of the global affine, we propose to explore the remain-
ing distortion after compensating the local affine transform.
Here, we develop a metric of averaged bending (ABending)
distortion, which is the weighted local bending distoriton of
all clusters. The weights again are obtained from the saliency
map.

In addition to AAfine and ABending metrics derived from a
parametric viewpoint, we also try to quantify distortion using a
nonparametric approach through a weighted average of cluster-
level standard deviations (AStd) of displacement vectors. It is
evaluated by first calculating the standard deviation of affine-
compensated displacement vectors for each cluster, and then
averaging the standard deviations using the weights obtained
from the saliency map. This is motivated by the observation
that a good retargeting operation tends to incur less distortion
within a local cluster.

III. PERFORMANCE EVALUATION METHODOLOGY

A. Dataset and Subjective Reference Scores

We carry out experimental work using the RetargetMe
dataset [39] containing 37 distinct color images, and each of
these images has 8 different versions generated by 8 retarget-
ing algorithms which are briefly reviewed in Appendix A.

The subjective evaluation on the quality of the retargeted
images [19] were carried out through Amazon’s Mechanical
Turk crowdsourcing service. The subjective scores are calcu-
lated as follows. A human observer is presented with two
selected retargeted versions of an original image and asked
about his/her preference in terms of which one looks better.
The questions are asked over all

(
8
2

)
= 28 possible pairs

of retargeted versions, and the number of votes received by
each retargeted version is considered as human’s rating. Such
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experiment is repeated on 210 participants and leads to the
collective subjective rating for the retargeting methods. More
details can be found in [19].

B. Assess Quality Metrics’ Subjective Correlation
1) Kendall’s τ correlation: To assess the the proposed

quality metrics for the reduced-reference quality evaluation,
we examine to what extent they correlate with human’s ratings.
The previous RetargetMe work [19] adopted the conventional
version of Kendall’s τ correlation between the subjective
ratings and objective scores:

τ =
nc − nd
nc + nd

where nc is the number of concordant pairs and nd is the
number of discordant pairs over all pairs of entries in the
two rankings. We can see that τ ranges from −1 to 1, where
a value of +1/−1 indicates perfect agreement/disagreement
between the subjective votes and automated scores, and a value
of 0 means no agreement at all. Furthermore, to verify that
the correlation values are significantly different from 0, a χ2

hypothesis test is carried out against the null hypothesis that
the observed correlations have zero mean, suggesting that the
subjective and objective scores are uncorrelated.

2) Limitations of Kendall’s τ : Rank correlation such as
Kendall’s τ and Spearsman’s ρ are known for their robustness
against outliers when compared to the commonly used Pearson
product-moment correlation coefficient because ranking effec-
tively equalizes the distance between consecutively ordered
samples and omits their absolute differences. While this ro-
bustness makes the measurements less susceptible to outliers,
when Kendall’s τ is employed to quantify the correlation
between subject votes and automated scores, its “robustness”
may not be adequately capture the inconsistency between
subject votes and automated scores. More specifically, we
see two potential limitations of the conventional version of
Kendall’s τ for our quality assessment application:

i) an enhanced sensitivity to those subjective ratings bear-
ing similar amounts of votes, and

ii) a reduced sensitivity to penalizing the discordant pairs.
The first aspect concerns that visually similar retargeted

images are easy to introduce mismatches between rank vectors,
which results in a smaller correlation coefficient. Our visual
check on the RetargetMe database along with the subjectives
votes reveals that observers of subjective evaluation usually
have difficulty in differentiating among similar visually pleas-
ing retargeted images. As shown in Fig. 8, images generated
by various retargeting algorithms can be grouped into several
clusters (using such a classification algorithm as the nearest
neighbor approach) according to the votes that they received.
Fig. 8(a) shows that within Cluster 2, a slightly higher number
of observers believe that SC is better than SM. It is possible
that if the subjective test is carried out on another set of ob-
servers, they may conclude SM looks slightly better than SC.
This motivates us to consider an improvement on Kendall’s τ
to better account for those ratings receiving similar votes and
not to penalize their rank differences when calculating the final
correlation coefficient.
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Fig. 8: Subjective votes for eight retargeting methods applied
to (a) Image#19, and (b) Image#36.

The second aspect concerns that the discordant pairs are
not penalized enough, which results in a larger correlation
coefficient. In the example shown in Fig. 8(a), if an automated
method favors SCL over SC, this would be substantially
different from the subjective results and yet Kendall’s τ does
not adequately account for such significance mismatch. Hence,
it is desirable to be able to take into account the level of
discordance.

3) Clustered Kendall’s τ : To address the two issues men-
tioned above, we propose a clustered Kendall’s τ that first
group the subjective votes into clusters and then apply
Kendall’s τ with adaptive penalty levels—lower for intra-
cluster discordant pairs, and higher for inter-cluster discordant
pairs. More specifically:
• If the pair is concordant, then increase the concordant

counter nc by 1, i.e., nc ← nc + 1 (same as in
conventional Kendall’s τ ).

• If the pair is discordant, then depending whether two
elements of subjective votes fall into the same cluster or
different clusters, adaptively determine the penalty levels
for this pair:

– if the two elements are within the same cluster, we
may either penalize slightly or do not penalize at
all, according to a parameter p0, i.e., nd ← nd+p0,
0 ≤ p0 < 1;

– if the two elements belong to different clusters, we
penalize the discordant pair based on the difference
between clusters’ indices ∆i, i.e., nd ← nd+g(∆i),
where g is a monotonically nondecreasing function.

TABLE II shows an example of clustered Kendall’s τ , and
compare them with the conventional Kendall’s τ . Here, we
choose p0 = 0.5 and g(1) = g(2) = 1, g(3) = g(4) = ... =
2. Note that the difference in the setting of the conventional
Kendall’s τ : nd is increased by 1 for each discordant pair.

It is easy to verify that value of correlation also ranges
from −1 to +1 for the clustered Kendall’s τ , and that when a
concordant pair becomes discordant, the resulting τ value will
drop. Note that the “no-agreement” value now depends on the
selections of penalty levels, and are may not be 0. This also
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TABLE II: Comparison between the conventional version of Kendall’s τ and proposed clustered Kendall’s τ

Kendall’s τ Clustered Kendall’s τ
Concordant Discordant Concordant Discordant

(reward level) (penalty level) (reward level) (penalty level)

Intra Cluster 1 1 1 0.5

Inter Cluster 1 1 1 1, 1, 2, 2, ...

TABLE III: Correlation with subjective votes with and without
reference images (Kendall’s τ )

Metric
Subjects Having Reference Subjects Having No Reference

Mean Std p-value Mean Std p-value

Pr
io

r
ar

t

SIFTflow 0.145 0.26 0.001 0.170 0.25 0.000

EMD 0.251 0.27 0.000 0.199 0.31 0.000

BDS 0.083 0.27 0.040 0.135 0.28 0.002

BDW 0.046 0.18 0.164 0.098 0.24 0.019

EH 0.004 0.33 0.468 −0.002 0.33 0.516

CL −0.068 0.30 0.923 −0.093 0.33 0.975

RAND −0.031 0.28 0.742 0.006 0.28 0.451

Pr
op

os
ed

GAffine 0.263 0.29 0.000 0.249 0.33 0.000

GBending 0.170 0.26 0.000 0.095 0.25 0.023

AAffine 0.156 0.34 0.000 0.143 0.36 0.001

ABending 0.112 0.25 0.009 0.095 0.24 0.023

AStd 0.193 0.22 0.000 0.060 0.30 0.104

GSS 0.097 0.23 0.021 0.087 0.26 0.034

implies that specific correlation values given by Kendall’s τ
and clustered Kendall’s τ are not directly comparable.

IV. PERFORMANCES OF AUTOMATED SCORES

A. Average Performances in Terms of Kendall’s τ

We compute the Kendall’s τ for the proposed quality metrics
and compare to metrics listed in [19]. In TABLE III, we show
the results by the conventional version of Kendall’s τ which is
comparable to those results in [19]; in TABLE IV, we show the
results by clustered Kendall’s τ to assess the correlation from
a perspective which accounts for penalties in such a way that
it is less sensitive to intra-cluster discordance and emphasizes
more for inter-cluster discordance. Note that due to difference
in the two versions of Kendall’s τ as discussed in the last
section, the correlation values are meant to be compared within
each tables but not to be compared between tables. Correlation
values greater than 0.1 are emphasized using boldface.

The RetargetMe database provides two scenarios for a
human observer to answer his/her preference are tested: with
and without the original image. The case of subjects hav-
ing reference was conceptually similar to the way that full-
reference and reduced-reference metrics work, and the case of
without reference was considered more as an exploration. We
thus mainly focus on the “with reference” case, and yet for the
sake of completeness, we also include the results comparing
with subjective ranking when subjects have no reference. To
help analyze the results, we review various metrics that were
compared in the RetargetMe paper [19] in Appendix B.

TABLES III and IV consistently reveal that most elements
of our proposed quality metrics using partial reference from

TABLE IV: Correlation with subjective votes with and without
reference images (Clustered Kendall’s τ )

Metric
Subjects Having Subjects Having

Reference No Reference

Mean Std Mean Std

Pr
io

r
ar

t

SIFTflow 0.120 0.29 0.171 0.27

EMD 0.244 0.31 0.210 0.33

BDS 0.053 0.30 0.131 0.31

BDW −0.008 0.20 0.091 0.26

EH −0.039 0.35 −0.020 0.34

CL −0.105 0.33 −0.111 0.37

RAND −0.087 0.30 −0.010 0.31

Pr
op

os
ed

GAffine 0.264 0.35 0.249 0.37

GBending 0.152 0.31 0.087 0.27

AAffine 0.134 0.39 0.134 0.40

ABending 0.081 0.29 0.082 0.28

AStd 0.160 0.26 0.054 0.32

GSS 0.062 0.27 0.067 0.28

TABLE V: Comparison of Lengths of Raw Hashes
of Various Metrics

Metric Length of Raw Hash

BDS N (original image is needed)
BDW N (original image is needed)
EMD N

n2 × 5-tuplea

SIFTflow N × 128-tuple
EH 16× 5-tuple
CL 64× 12-tuple

Proposed ∼ 120× 2-tuple
a N represents the total number of pixels of an test image.

RetargetMe database [39] has images of sizes range from
300 × 392 to 813 × 1024 so that N ∼ 105. And n is an
image downscaling factor which is set to 8 in [21].

corner point locations can achieve good performances, and
some are as good as or better than such top performing full-
reference metrics as EMD and SIFTflow. We see that the
global affine cost is the best in the sense that it is highly
likely to give a score that is consistent with human’s ratings.

TABLE V summarizes the lengths of raw hashes for the
aforementioned metrics. Amongst the metrics, BDS and BDW
require the original image to be available and thus fall into the
category of full-reference quality assessment; The hash length
of SIFTflow is proportional to the number of pixels that can be
as large as 107 for a moderate-resolution image; EMD uses
about 103 to 106 five-parameter tuples, as compared to the
proposed method of only about 120 two-parameter tuples. EH
and CL have short hash length but do not explicitly account for
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structural distortion. This comparison shows that our proposed
corner-point-based hash along with the corresponding align-
ment method is highly compact and has a length of about two
to five orders of magnitude shorter than other well-performing
metrics in the prior art (such as EMD and SIFTflow).

B. Structural Distortion Analysis

In this part, we demonstrate how well the proposed quality
assessment framework works through examples. Not only does
the framework generate quality scores, but also it provides a
detailed annotated image and a reconstructed image that can
assist human observers to make their own decisions on the
quality of the image, and allow for flexible adaptation to the
needs of different application scenarios.

In Fig. 9, we show images retargeted by three different
operations: cropping (CR), seam-carving (SC), and streaming
video (SV). We choose these retargeting methods for com-
parison since they capture three major types of retargeting
effects. Cropping retains the aspect ratio of salient objects, and
is found to be preferred by many human observers, especially
when an original image is not available for comparison [19].
Seam carving resizes an image by removing seams of low
energy; it often change the aspect ratios of salient objects
when the resizing factor is large, and incur non-uniform global
distortion. Streaming video tries to scale various parts of the
image differently so that the edge discontinuity as observed in
seam carving can be reduced.

1) Image annotated with displacement field: In Fig. 9, we
show the point correspondences between the retargeted images
and the original image by displaying the raw displacement
vector fields and the affine-compensated displacement vector
fields. The correspondences reveal different types of retarget-
ing effects. For the image having undergone cropping shown
in Figs. 9a and 9d, we can see as expected that the matched
corner points have no displacement at all. For seam carving
results shown in Figs. 9b and 9e, the displace vectors are
all horizontal, which confirms that vertical seams have been
removed from the image by the seam carving operations.
Also, several regions have different displacement sizes, which
indicates the different amount of carving at different regions.
For example, Fig. 9e shows that even when the effect of
global affine transform is removed, some affine-compensated
displacement vectors are still strong and varies across regions.
For image having undergone streaming video based retargeting
shown in Figs. 9c and 9f, we can see the retargeting has an
overall scaling effect, which scales down the salient region (the
lower part of the image) and stretches the nonsalient region
(the upper part of the image). After compensating the global
affine effect, the bottom part of the image matches nearly
perfectly with almost no residual displacement vectors left.

With the assistance of these annotated image results, a user
can have a balanced view on the image quality—from the
user’s high-level visual perception as well as the assistance by
the two proposed types of objective displacement vector fields
showing how corner points are moved. All these are based
on very compact reference information containing encoded a
small number of corner point positions of the original image.

TABLE VI: Automated quality scores for images retargeted
by CR, SC, and SV methods

Metric
Retargeting operations
CR SC SV

GAffine 0.01 0.33 0.10

GBending 0.00 0.00 0.00

ABending 0.00 0.27 0.57

AAfine 0.00 0.21 0.08

AStd 1.21 6.00 3.16

GSS 0.00 0.00 0.01

Fused score 0.04 0.38 0.16

2) Automated quality scores: The automated quality scores
computed on three retargeted images in Fig. 9 are shown in
TABLE VI. We can see that cropping causes the least amount
of error, which is expected because no structural distortion
is ever introduced for the remaining content. Seam carving
has the highest affine distortions in both global and averaged
scales, which adequately reflects the visible structural distor-
tions introduced by this retargeting technique. Seam carving
also has larger averaged standard deviation of displacement
vectors (AStd), which reveals how uniform in length the
affine-compensated vectors of every cluster are. Overall, we
see that the proposed metrics correlate well with subjective
expectations.

3) Reconstructed original image: To further assist the
observer, it is beneficial to convert a retargeted image back
to the grid of the original image to reconstruct the original
image. A raw displacement vector field generated by the point
correspondences can assist this reconstruction. As a proof-of-
concept, we show a simple approach that compensates the
distortion due to the equivalent global affine transform. The
reconstructed images are shown in Fig. 10.

In summary, the raw displacement field and affine-
compensated displacement field, which are estimated from
the corresponding corner points between the retargeted image
and the original image, can not only be used to compute
scores for automatic quality evaluation, but more importantly,
they provide an important tool to assist human evaluation
when the original image is not available. The compact side
information of the corner points provides rich information on
how the image has been retargeted. Since people generally
have different preferences on various kinds of distortions,
such as edge discontinuity, violated symmetry, and content
loss, such displacement fields allow users to make their own
judgements instead of relying on a “one-size-fit-all” set of
quality scores. This is an important advantage of our proposed
framework.

C. Fusion of Multi-Facet Scores via Learning Theory

As we have seen, our proposed metrics have very good
correlations with the human ratings and are comparable to the
current state-of-the-art full-reference metrics. Each of these
proposed scores provides some aspect of structural quality
assessment of an retargeted image. In some applications,
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(a) (b) (c)

(d) (e) (f)

Fig. 9: Annotated images: raw displacement vector fields (top row) and affine-compensated displacement vector fields overlaid
on images undergone retargeting operations (bottom row) (a,d) Cropping (CR), (b,e) Seam Carving (SC), and (c,f) Streaming
Video (SV), respectively. (Best viewed on screen with scaling ratio 400% or more.)

(a) (b) (c)

Fig. 10: Images reconstructed from retargeted images by various operations: (a) CR, (b) SC, and (c) SV. The original image
is available in Fig. 6a. Missing regions due to retargeting operations are shaded.

it is desirable to have a single score that can provide as
comprehensive assessment as possible. We now examine the
fusion of elements of the metrics developed.

We consider a fusion strategy by a weighted average of
various metric elements and formulate as a learning problem
of weight parameters: the objective function for maximization
is Kendall’s τ correlation coefficient, and the variable to be
learned is the weight vector w ∈ R6.

We propose using leave-one-out cross-validation to learn
the weights for the proposed metrics. We apply our prior
knowledge to exclude those images that have substantially
wrong corner-point matching or matching are not on the main

objects. This gives us 23 images, of which 18 randomly
selected images form a training set, and 5 images form a
testing set. As the optimization problem is nonconvex, a
pattern search via the Hooke-Jeeves optimization algorithm
[40] is used.

Fig. 11 shows the weight vectors whose validation results
give positive correlations, and the average weights are shown
in thick curve. As the learned vectors are fairly consistent
across validation runs, we adopt the average vector and test
it on five testing images. The testing results show very good
Kendall’s of (0.21, 0.57, 0.43, 0.79, 0.43) suggesting good per-
formance of the fusion. To put this in perspective, we recall
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Fig. 11: Weight vectors learned using leave-one-out cross-
validation, and the thicker one is their average.

that the best average Kendall’s τ value of our proposed metrics
is 0.263 given by GAffine, and the best average Kendall’s τ
of full-reference metrics is 0.251 by EMD. In the last row of
TABLE VI, we calculate the fused scores for the qualities of
retargeted images.

V. CONCLUSION

In this paper, we have studied the problem of reduced-
reference quality assessment for retargeted images by mea-
suring structural quality degradation. We have proposed to
compactly encode strong corner points as partial information
and compute correspondences of corner points to estimate
detailed displacement vector fields. Novel structural quality
metrics are proposed, and experiments show that the proposed
metrics have significant positive statistical correlation with
human subjective evaluations and a fusion of the metrics
outperforms the best known full-reference quality metric for
retargeted images. Furthermore, the framework also provides
annotated images and reconstructed images which are useful
tools assisting users to evaluate image quality based on their
own preferences, instead of having to rely on a single qual-
ity score by a conventional quality assessment metric. The
proposed structural metrics can complement and be integrated
with metrics that assess intensity and texture qualities to form
a more general quality assessment scheme. As future work, it
will be interesting to see how the estimated distortion map can
be used to classify different retargeting methods, and how a
more precise matching can be achieved with a limited number
of corner points.

APPENDIX A
BRIEF REVIEW OF VARIOUS RETARGETING ALGORITHMS

A survey of a number of retargeting algorithms can be
found in the supplemental sheet of [19]. Here we provide
a brief review. Specifically, scaling (SCL) [19] applies non-
uniform scaling with bicubic interpolation to resize the image.
Cropping (CR) [19] manually extracts a subimage from the
original image. Seam carving (SC) [14] resizes the image by
adaptively removing “seams”, sequences of 8-connected pixels
with low values defined by some energy function from the
original image; and such an energy function can reflect gradi-
ent magnitude, entropy, visual saliency, or eye-gaze movement.
Nonhomogeneous warping (WARP) [16] shrink less important
regions more severely according to an importance map. Scale-
and-Stretch (SNS) [17] iteratively computes optimal local

scaling factors for each local region guided by a significance
map and updating a warped image that matches these scaling
factors as closely as possible. Multi-operator (MULTIOP) [15]
uses a combination of seam carving, scaling and cropping to
resize the image. Shift-maps (SM) [41] operates at pixel level
but is able to remove pixels belonging to objects altogether
with a global optimization. Streaming Video (SV) [18] uses
mainly per-pixel warp with a set of automatic and interactive
quality criteria to obtain an image of required resolution.

APPENDIX B
BRIEF REVIEW OF VARIOUS QUALITY ASSESSMENT

METRICS

We also provide a brief review of a number of quality as-
sessment metrics. Specifically, Bidirectional similarity (BDS)
is an image similarity measure proposed in [20]. For each
patch in one of the two images, a well-matched patch is sought
in the other image, and the distance of two images is defined
as the mean distance in color space between corresponding
patches. [19] Bidirectional warping (BDW) [15] is a similar
metric with the exception that the mapping between the two
images is constrained to be monotonic, i.e., the resulting
mapping will maintain the relative positions of patches in
the images. [19] SIFT flow (SIFTflow) [22] adopts the same
idea as that of the optical flow, and replaces pixel intensity
feature with a 128-d SIFT descriptor. The SIFT descriptor
is calculated for every pixel of the image, and SIFT flow is
therefore not a compact hash. The SIFTflow distance between
two images is given by the minimum value of an energy func-
tion achieved by a best estimated SIFTflow vector field which
is mainly smooth but also preserves spatial discontinuities.
Earth mover’s distance (EMD) measures the dissimilarity of
two distributions by computing the minimum cost required
to transform one distribution into the other. The RetargetMe
work [19], following Pele and Werman [21], construct the dis-
tributions for a 5-parameter tuple using the spatial coordinates
and L*, a*, and b* components of downsampled images in
the L*a*b* colorspace. Two lower-level distance metrics are
also examined. Edge histogram descriptor (EH) [42] captures
the spatial distribution of edges by concatenating the 5-bin
histograms (vertical, horizontal, 45◦ diagonal, 135◦ diagonal,
and isotropic) of 16 subimages into an 80-bin descriptor. L1
distance between the descriptors of two images is calculated to
quantify the dissimilarity. Color layout descriptor (CL) [43] is
formed by stacking low frequency DCT coefficients of YUV
channels together. The distance of two images is defined as a
weighted L2 distance of the descriptors. The RetargetMe work
also includes a random metric (RAND) for reference purpose:
for any pair of images, RAND simply returns a distance value
uniformly drawn from (0, 1).
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