Non-Linear Digital Self-Interference Cancellation for In-Band Full-Duplex Radios Using Neural Networks

Alexios Balatsoukas-Stimming

Telecommunications Circuits Laboratory Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland

In-Band Full-Duplex Communications

In-band full-duplex communications:

- 1. Up to twice the throughput wrt TDD & FDD
- 2. No additional bandwidth
- 3. No wasted time or frequency resources

Fundamental Challenge

Self-interference (SI) signal is **much stronger** than the desired signal and needs to be cancelled!

Experimental Setup

- **Dataset:** Full-duplex testbed with 53 dB analog cancellation
- General: 10 MHz OFDM signal, 10 dBm transmit power, 20,000 samples (90% training, 10% test), M + L = 13
- **Polynomial:** P = 7, LS training
- NN: $n_h = 17$, MSE cost, Adam optimizer ($\lambda = 0.004, B = 32$)

Self-Interference Cancellation Results

- In principle, SI cancellation should be easy since the digital transmitted signal is known
- In practice, the digital signal does not tell the whole story!

Polynomial Non-Linear Digital Cancellation

Captures IQ imbalance, PA non-linearities (up to order P, memory M), and channel memory (L) using a complex polynomial model: M + L - 1

$$y(n) = \sum_{\substack{p=1, q=0 \\ p \text{ odd}}} \sum_{\substack{q=0 \\ m=0}} \sum_{\substack{m=0 \\ m=0}} h_{p,q}(m)x(n-m)^q x^*(n-m)^{p-q}$$

Cancellation performance:

NN training convergence:

Number of parameters: $n_{\text{poly}} = (M + L) \left(\frac{P+1}{2}\right) \left(\frac{P+1}{2} + 1\right)$

Complexity Analysis

Best-case scenario assumptions:

- Basis function computation is free
- Complex mults require 3 real mults and 0 real additions **Complexity:**
- 1. Real additions: $n_{\text{ADD,poly}} = 2(n_{\text{poly}} M L 1)$
- 2. Real multiplications: $n_{\text{MUL,poly}} = 3(n_{\text{poly}} M L)$

Neural Network Non-Linear Digital Cancellation

Two-step digital cancellation:

1. Linear digital cancellation: $\hat{y}_{\text{lin}}(n) = \sum_{m=0}^{M+L-1} \hat{h}_{1,1}(m)x(n-m)$ 2. Train a neural network to cancel: $y_{nl}(n) \approx y(n) - \hat{y}_{lin}(n)$ Single-layer NN with n_h neurons and ReLU activation functions.

Complexity Comparison

	Polynomial	NN	Improvement
Additions	492	493	0%
Multiplications	741	476	36%

Conclusions & Future Work

- Neural network seems **very promising**: same performance as the complex polynomial model, but with **lower complexity**
- Convergence and complexity of training need to be compared
- Scenarios with higher non-linear cancellation have to be examined
- Hardware implementations have to be compared

