BEYOND PKI: ENHANCED AUTHENTICATION IN VEHICULAR NETWORKS VIA MIMO

C. EMRE KOKSAL

Electrical and Computer Engineering The Ohio State University

CONNECTED VEHICLES

- OnStar (employed in GM cars):
 - Automatic crash response
 - Emergency services
 - Stolen Vehicle Assistance
 - Navigation

- Ford:
 - Navigation, weather, etc.
 - IoT interaction with a data center

CONNECTED VEHICLES

- Connections to **outside** world
 - cellular: 3G-4G LTE
 - V2X: 802.11p, DSRC
 - major application is the exchange of safety messages for intelligent transportation systems

- Connections internal to the vehicle
 - WiFi: Hotspot 50 feet in radius
 - Bluetooth: Multi-device support
 - major application is to replace internal wiring with wireless

CONNECTED BUT SECURE?

- Connectedness has consequences
 - control of the vehicle
 - 1.4M vehicles recalled recently

• What are the major issues in security?

CONNECTED BUT SECURE?

HOW DO WE APPROACH THESE PROBLEMS?

THE OHIO STATE UNIVERSITY

- Establishing connection leads to significant consequences
 - control of the vehicle
 - 1.4M vehicles recalled recently

- What are the major issues in security?
- These issues are addressed at the application layer via computational cryptography
 - information confidentiality: public/private key encryption
 - authentication: key-based, managed by trusted certificate authorities

Cryptographic approaches address critical problems, avoiding "hacking" upon connection establishment

THE OHIO STATE UNIVERSITY

- **Question:** What about the connection itself? Is it secure?
- **Contribution:** Developing active phy-layer defense mechanisms to mitigate attacks at higher layers.

• This project develops solutions that utilize **Multiple Input Multiple Output (MIMO)** against impersonation attack with location spoofing

- MIMO channel and beamforming:
 - Unlike SISO, channel gains have directionality.
 - Receive array allows for Angle of Arrival (AoA) estimation
 - Transmit array allows for beamforming and spatial selection

THE OHIO STATE UNIVERSITY

Defense:

- Use a multi-antenna roadside unit
- Use the array act as a **radar** as well as a data receiver
- Verify *true* location

Techniques:

- The problem of deciding the authenticity of true transmission direction is a hypotheses testing problem
- The solution is Wald test statistics: $\frac{\left|\widehat{\theta} - \theta_{b}\right|}{\sqrt{CRB}} \stackrel{\geq^{H_{1}}}{\overset{<}_{H_{0}}} \alpha$

where CRB is the Cramer Rao bound for AoA estimation and α is the decision threshold

DEMONSTRATION

THE OHIO STATE UNIVERSITY

IMPLEMENTATION

THE OHIO STATE UNIVERSITY

mult hannel SDRs, enabling secure 4-antenna MIMO transceiver

single-antenna transceiver units to emulate users in multiuser settings

indoor setup for low-mobility security experiments

outdoor setup for low-mobility security experiments

Experimental Setups

- We have implemented DSRC in full using X300 USRPs.
- We have successfully evaluated low-mobility indoor and outdoor settings.
- We have conducted high-speed experiments at TRC testing infrastructure at East Liberty, OH.

System Components

Component	Туре	Role in Experiment
CPU	Intel Core i5-3200 CPU 3.40GHz × 2	Hosts for signal processing
Operating System	Ubuntu 16.04 LTS, 64 bits	—
GNU Radio	Version 3.7.10	Signal Processing Environment
USRP	Ettus X300 \times 2	Transmitter and Receiver
RF Daughter Board	Ettus Twin $\mathbf{Rx} \times 2$	Installed in one of the X300 USRP to form four channel Receiver
RF Daughter Board	Ettus CBX	Installed in one of the X300 USRP to form a single channel Transmitter
RF Antenna	VERT2450 \times 5	—

IEEE 802.11p Waveform Parameters

Parameter	Typical Value
Center Frequency	5.9 GHz
Bandwidth	10 MHz
FFT Length	64
Occupied Subcarrires	52
Data Subcarriers	48
Pilot Subcarriers	4
Beacon Size	200 Bytes
Beacon Interval	100 ms
Modulation	BPSK
Encoding	Convolutional
Encoding Rate	1/2
Transmit Power	+20 dBm
Array Configuration	ULA
Array Spacing	25 mm

GNU Radio Setup Block Diagram

- Transmitter:
 - We have implemented a single-antenna DSRC beacon transmitter over a 2910 USRP
 - Transmits a beacon every 100ms

Access point:

- We have implemented a 4-channel DSRC receiver over two X300 USRPs
- We have realized both ML and MUSIC AoA estimators over DSRC beacons
- Unlike MUSIC, ML estimator takes the advantage of the known preamble/pilot sequence. We have shown that ML estimator is resilient to jamming attacks

Transmitter Operation

THE OHIO STATE UNIVERSITY

Roadside Unit Operation

Déll

- Many attacks on the Vehicular Networking Systems can be addressed at the Physical Layer
- We developed new wireless defense mechanisms that exploit MIMO at RSUs to address attacks at Physical Layer as well as Higher Layers
- Our technique directly address the insider attack on PKI and enhance its security.
- News coverage:

R and D Magazine – "Could your car be hacked?"

Boston.com – "Why your car might be the latest target for hackers"

Dayton Daily News – "The newest frontier for hackers: your car"

Newswise – "Cybersecurity for your car"

ACM Tech News – ``*Cybersecurity for your car*"

- Many attacks on the Vehicular Networking Systems can be addressed at the Physical Layer
- We developed new wireless defense mechanisms that exploit MIMO at RSUs to address attacks at Physical Layer as well as Higher Layers
- Our technique directly address the insider attack on PKI and enhance its security.
- Testified on Capitol Hill:

- Many attacks on the Vehicular Networking Systems can be addressed at the Physical Layer
- We developed new wireless defense mechanisms that exploit MIMO at RSUs to address attacks at Physical Layer as well as Higher Layers
- Our technique directly address the insider attack on PKI and enhance its security.
- Papers:
 - 1. Gungor O. and Koksal C. E., "On the Basic Limits of RF-Fingerprint Based Authentication," *IEEE Transactions on Information Theory, Aug. 2016*
 - 2. Basciftci O., Koksal C. E., Ashikmin A., "Physical-Layer Security in Massive MIMO," *IEEE Transactions on Information Theory* revised and resubmitted
 - 3. Abdelaziz A. and Koksal C. E, "Fundamental Limits of Covert Communication over MIMO AWGN Channel," submitted to *IEEE Transactions on Information Theory*
 - 4. Abdelaziz A., Koksal C. E., Barickman F., Burton R., Martin J., and Weston J. "Mitigating Location Spoofing in Vehicular Networks using Angle of Arrival: Theory and Practice," *submitted to IEEE Transactions on Vehicular Technology*
 - 5. Abdelaziz A., Elbayoumy A., Koksal C. E, and El Gamal H., "Delay Limited and Ergodic Secrecy Capacity of MIMO Wiretap Channel," submitted to IEEE Journal on Selected Areas in Communication
 - 6. Abdelaziz A. and Koksal C. E., "Fundamental Limits of Covert Communication over MIMO AWGN Channel," *IEEE CNS* 2017
 - 7. Abdelaziz A., Elbayoumy A., Koksal C. E, and El Gamal H., "On the Compound MIMO Wiretap Channel with Mean Feedback," *IEEE ISIT 2017*
 - 8. Abdelaziz A., Koksal C. E, and Burton R., "Message Authentication and Secret Key Agreement in VANETs Via Angle of Arrival," *IEEE VNC 2016*
 - 9. Abdelaziz A., Koksal C. E, and El Gamal H., "On the Security of Angle of Arrival Estimation," *IEEE CNS 2016*

CONTACT *car.osu.edu*

C. Emre Koksal Professor koksal.2@osu.edu 614-598-1466

(a) k = 10(b) k = 1001 1 - 0- $\alpha = 1$ 0 $\alpha = 1$ 0.9 0.9 = 2 = 2 (P_F) False Alarm Probability (P_F) 0.8 0.8 3 = 3 False Alarm Probability = 4 0.7 0.7 $\alpha = 5$ $\alpha = 5$ 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 8.0.8.0.0.0.0.0.0.0.0.0.0.0. -20 0 20 40 -20 20 0 40 SNR (dB) SNR (dB)

Corrests the probability in a function of SNR NOR different on Unsuf of the Rieman different of the are 1002.5% apart. (a) Ricean k-factor of 10.

THE OHIO STATE UNIVERSITY