

Mobile App User Choice Engineering using Behavioral Science models

Merkourios Karaliopoulos and Iordanis Koutsopoulos **Department of Informatics**

Athens University of Economics and Business (AUEB), Greece {mkaralio,jordan}@aueb.gr

Setting

- When interacting with mobile apps, users need to make a choice out of a set of alternatives offered by the app
- Goal: Nudge users towards decisions that are best for them and for the app platform

Examples:

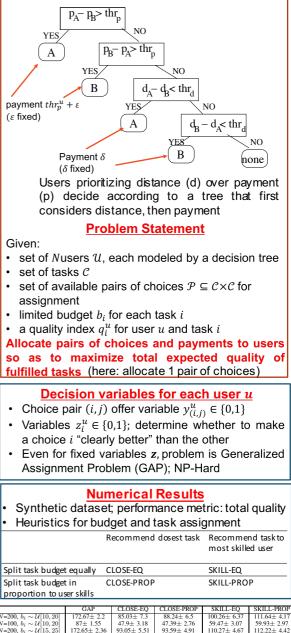
Application domain	Instance	Platform optimization objective
Mobile crowdsensing	App assigns crowdsensing tasks to users	Maximize quality of fulfilled tasks
Smart Energy apps	App issues energy-saving recommendations	Maximize amount of energy savings
Mobile advertising	App displays ads or offer coupons to users	Maximize revenue through user response to ads

Challenges

- How to model user choice-making Users do not decide rationally, have to make a choice
- guickly while interacting with mobile app
- How to Incorporate choices in platform optimization objective
- Need to appropriately engineer user incentives Idea
- Model user choice-making through concepts from **Behavioral Science**
 - class of Fast-and-Frugal-Tree (FFT) Lexicographic heuristics
- Use incentives as one of the features that determine user choice (to a different extent for different users) and allocate them so as to achieve platform optimization objective

Model

- Set of features \mathcal{F} that determine user choices
- $\mathcal{F} = \{\text{distance (effort) to do a task (d), incentive (p)}\}$
- Mobile app issues pairs of recommendations (choices) to each user u
- · Example message e.g. in a mobile crowdsensing app


Choice A: "Go to place A at distance d_A to do a task for payment p_A " OR Choice B: "Go to place B at distance d_B to do a task for payment p_B

Deterministic user decision model

- · A certain order in which to consider features of alternative choices A, B offered (e.g. first p then d - or vice versa)
- If choice A (B) is "clearly better" than the other, B (A) w.r.t. 1st feature in order, select A (B);
- Else consider 2nd feature
- If choice A (B) is "clearly better" than the other, B (A) w.r.t. 2nd feature In order, select A (B);
- If no choice is "clearly better than the other, select none of the choices
- **Thresholds** thr_p^u, thr_d^u determine when a choice is "clearly better" than the other in terms of a feature (p or d)

User model training

- Find feature order for each user
- Compute decision thresholds for each user
- Users prioritizing payment (p) over distance (d) decide according to tree below

Future work

- Many applications where user choices can be engineered through user-app interaction
- Recommender systems, online social networks, social media, online advertising,...
- Enhanced choice and user decision models
- Testing with real data

This research was supported by the European Commission H2020 Research Program under Grant number 688768 netCommons (Network Infrastructure as Commons) and by AUEB-RC under the internal project 'Original Scientific Publications''.