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Setting
»  When interacting with mobile apps, users need to make a
choice out of a set of alternatives offered by the app
* Goal: Nudge users towards decisions that are best for
them and for the app platform
* Examples:

Application domain Platform optimization
objective

Mobile crowdsensing  App assigns Maximize quality of
crowdsensing tasks to fulfilled tasks
users

Smart Energy apps App issues Maximize amount of
energy-saving energy savings
recommendations

Mobile advertising App displays ads or Maximize revenue
offer coupons to users through user response

to ads

Challenges
* How to model user choice-making

+ Users do not decide rationally, have to make a choice
quickly while interacting with mobile app

* How to Incorporate choices in platform optimization
objective

* Need to appropriately engineer user incentives

Idea

* Model user choice-making through concepts from
Behavioral Science
— class of Fast-and-Frugal-Tree (FFT) Lexicographic

heuristics

» Use incentives as one of the features that determine
user choice (to a different extent for different users)
and allocate them so as to achieve platform
optimization objective

Model
» Set of features F that determine user choices
« F ={distance (effort) to do a task (d), incentive (p)}
» Mobile app issues pairs of recommendations (choices) to
each user u
» Example message e.g. in a mobile crowdsensing app

Choice A: “Go to place A at distance d, to do a task for1
payment p,” OR

Choice B: “Go to place B at distance dpto do a task for1
payment pg” |

Deterministic user decision model

» A certain order in which to consider features of alternative
choices A, B offered (e.qg. first p then d - or vice versa)

» If choice A (B) is “clearly better” than the other, B (A) w.r.t.
1st feature in order, select A (B);

+ Else consider 2" feature

« If choice A (B) is “clearly better” than the other, B (A) w.r.t.
2nd feature In order, select A (B);

» If no choice is “clearly better than the other, select none of
the choices

+ Thresholds thr}, thrjdetermine when a choice is “clearly
better” than the other in terms of a feature (p or d)

User model training
» Find feature order for each user
» Compute decision thresholds for each user

Users prioritizing payment (p) over distance
(d) decide according to tree below

payment thr + ¢
(& fixed)

Payment & /

NO
(8 fixed)

Users prioritizing distance (d) over payment
(p) decide according to a tree that first
considers distance, then payment

Problem Statement

Given:

+ set of Nusers U, each modeled by a decision tree

» setof tasks €

» set of available pairs of choices P < CxC for
assignment

+ limited budget b; for each task i

« aquality index q;* for user u and task i

Allocate pairs of choices and payments to users

so as to maximize total expected quality of

fulfilled tasks (here: allocate 1 pair of choices)

Decision variables for each user u
+ Choice pair (i, /) offer variable yg ;, € {0,1}
 Variables z}* € {0,1}; determine whether to make
a choice i “clearly better” than the other
» Even for fixed variables z, problem is Generalized
Assignment Problem (GAP); NP-Hard

Numerical Results
» Synthetic dataset; performance metric: total quality
* Heuristics for budget and task assignment

Recommend dosest task Recommend taskto
most skilled user

Split task budget equally CLOSE-EQ SKILL-EQ
Split task budget in CLOSE-PROP SKILL-PROP
proportion to user skills

GAP CLOSE-EQ CLOSE-PROP SKILL-EQ SKILL-PROP

N=200, b; ~ U[10,20] 172.67£ 2.2 85.03x 7.3 88.24% 6.5 100.26% 6.37 | 111.64£ 4.17
N=100, b; ~ U[10,20] 87+ 1.55 47.9+ 3.18 47.39+ 2.76 59.47+ 3.07 59.93+ 2.97
N=200, bj ~U[15,25] | 172.65+ 2.36 | 93.05+ 5.51 93.59+ 4.91 110.27+ 4.67 | 112.224 4.42

Future work
* Many applications where user choices can be
engineered through user-app interaction
» Recommender systems, online social networks,

social media, online advertising,...
* Enhanced choice and user decision models
» Testing with real data
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