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Introduction

Motivation

e Tropical geometry [4] is an emerging and interesting field.

* Geometrical analysis of algorithms allows for intuition.
* Pruning naturally defines polytopes which enables geometrical analysis.

Contributions

* Analysing Viterbi and pruning in tropical algebra.

* Pruning occurs from the Cuninghame-Green inverse.

e Utilising objects of tropical geometry to better understand pruning.

* Metrics on polytopes.

Background
Tropical Algebra
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Definition 2: The support of a vector x, denoted by supp(x) s the set of the indices

corresponding to finite entries in X.

e r;=(min(z)+n) —z — '€s§3(z) —z(t) - e7HD = — -es%m g(1) - 10@
* Metrics:
1 log r, 1
= —, &= — z:(t) - 70
supp(z) Z log (maxr) supp(z) Z 2

iesupp(z) iesupp(z)

* v IS based on volume.
* £ IS based on entropy.
 Tradeoff between complexity and accuracy.

Example and Experimentation

Numerical Example for Weighted Finite State Transducers

 Similar to linear algebra, but the pair (+

e Matrix/vector multiplication [6] (elements from R,

(A

= /\Aik + By,
k=1

e Neutral elements are oo for the minimum and O for the addition.

e Example:
2 4|47
-6 11 3

Definition 1: Let a,b € IR”+1 An affine tropical half-space is a subset of R’

n
: </\ai+xi> /\an+1 (
i=1

T(a,b) :={xe R,

min

- min(2+ 7.4+ 3) |
min(—6 + 7,11 + 3)

Tropical Geometry - Outputs:

/\b + X;

=1

-
_1_

* Tropical polyhedra are intersections of affine tropical half-spaces.
* Tropical polytopes are bounded tropical polyhedra.

(=)
y=a+xAf=mn(a+ x,[)

 Viterbi algorithm |3]:

min

) A bn+1}

(65— a)

i (y—B)

q(t) = <maxwlq](t — 1)> - b(o,)
J

e Negative logarithm of (1) and x(t) = -log q(t), A = -log W, p(0:) = -log b(0?):

x() =ATHx@-1) + p(o,)
e Define P(oy):
_pl(o-t) S )
P(o,) = : :
| pa(oy)
* Viterbi in tropical algebra:
x(t) = P(c) HA' Hx( - 1)

* Pruning: go through x(t¢) and set values greater than a threshold to + .

e |ndices that should be pruned =— Cuninghame-Green inverse

Proposition 1: Let

X () oo
X(1) = o0 xz.(t)
i 0 0

where xi(t) represents the i-th element of the vector x(t), and let m = 0 +

8

X, (1)

% (x(0)"

, X) is replaced by (A, +) (where A = min).

defined by:

y=a+2xAf+xAy=min(a+2x,+x,y)

Tropical Viterbl

X(t)) + 0,

where 0 is a vector that comprises of 0 and 0 is the leniency variable. Finally, let

the maz-plus matriz multiplication and X*(¢) :=

= X*(1)

indicate which indices of x(t) need to be pruned.

Geometry of the Viterbl

e \ariable vector z

e Bind z:
- from below: z>b, b=P)HATHx(-1)
- from above:
1 T
Zz<7, ’7=‘9+5<b b)+0

® (5) 4+ (6) = polytope
* (n-1)-faces —p best paths

X/

" denote

— X!X(#) . Then, the negative elements of

(4)

- Transition matrix A, observation matrix P(a):

o0 0.602 0.523 0.824 0.523 oo (0 0 0 o 0 0o
o o o 0046 1 o o 0523 o 00 00 00
_loo o 00 1 0046 oo oo oo 0757 o0 o0 00
A= 00 00 00 00 o 0 . Pla) = 00 o0 oo 0.757 o0 00
00 OO 00 00 00 0 00 0 o0 oo 0.757 o0

00 o0 o0 00 00 00 00 0 o0 o0 oo  0.757]

- Starting state x(0):

X(0)=[0 o0 o0 o0 o0 ool
x()=[co 1.125 128 1581 128 ool”
X(2)=[co o0 oo 1.694 2.083 2.037]"
Xx3)=[co o© o0 oo oo 1.842]"

- Polytopes for x(1) and x(2):

0 =0.35(=

— log O.4D

2.042 + N

2.040 - N

2.036 N

* Transliteration task: greeklish (latin text) —9 greek text
* Minimising derivative of € vs maximising v
» Best results:

e < 309% states survive

E, U

Transliteration from latin to greek characters

input 0 | time (s) 3 % min | max

\ELLIPEIS\ | 0 89.9 0.0248 0 1 1
(Latin text 5 121.7 | 0.0018 | 1.558 1 1444
for the 10 201.9 0.0013 | 2.094 | 101 3829
Greek word || 15 533.0 0.0001 | 1.630 | 5145 | 10333
) 00 580.3 0.0001 0 10333 | 10333

\ALLA\ 0 77.6 0.0616 0 1 1
(Latin text 5 93.3 0.0039 | 1.435 1 1215
for the 10 175.2 0.0026 | 2.072 | 153 5431
Greek word || 15 481.8 0.0003 | 1.765 | 7088 | 14246
) 00 562.9 0.0002 0 14246 | 14246
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